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Abstract

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality. Unlike Com-

puted Tomography (CT), MRI does not use ionizing radiation. In addition, MRI

provides a large number of flexible contrast parameters. These provide excellent soft

tissue contrast. Over the years, MRI has improved dramatically in both imaging qual-

ity and imaging speed. This revolutionized the field of diagnostic medicine. However,

imaging speed, which is essential to many of the MRI applications remains a major

challenge.

Imaging speed can be improved by faster collection of data. This can be achieved

by using sophisticated non-Cartesian k-space trajectories. One of the design chal-

lenges is to minimize the gradient waveform duration, subject to both hardware and

sequence constraints. Existing methods provide solutions limited to specific trajecto-

ries, or solutions which are sub-optimal. Based on optimal control theory, a method

for designing gradient waveforms for arbitrary k-space trajectories is developed. It

is non-iterative, computationally efficient and provides the time-optimal waveforms

that traces k-space trajectories as fast as possible within the hardware limits.

With current hardware and sequence design methods, a point has nearly been

reached in which fundamental physical and physiological effects limits the ability to

simply encode data more quickly. This fundamental limit has led many researchers

to look for methods to reduce the amount of acquired data without degrading image

quality. MR image data are often highly redundant, which can be exploited to reduce

the amount of acquired data, and hence the scan time. In this work, a method

that exploits the inherent compressibility of MR images is developed. It is based

on the recent theory of compressed sensing (CS). In compressed sensing, the data
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are implicitly compressed in the acquisition process by obtaining fewer, so called,

incoherent measurements. This is achieved by various randomized k-space sampling

schemes. Images are accurately reconstructed from these measurements using a non-

linear recovery processes that enforces the compressibility of the image. As a result,

for some applications the scan time can be accelerated up to an order of magnitude.

SPIR-iT is an iTerative Self-consistent Parallel Imaging Reconstruction method.

It is auto-calibrating and does not require explicit estimates of the coil sensitivity

maps. SPIR-iT formulates the parallel imaging reconstruction through data consis-

tency constraints. It is a general, optimal solution for coil-by-coil parallel imaging

from arbitrary k-space trajectories. It is also a general framework for easily incorpo-

rating additional image priors, and in particular sparsity/compressibility constraints

for combining parallel imaging with compressed sensing.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality. Unlike Com-

puted Tomography (CT), MRI does not use ionizing radiation. In addition, MRI

provides a large number of flexible contrast parameters. These provide excellent soft

tissue contrast. MRI can also be sensitized to many specific parameters. These in-

clude imaging brain oxygen saturation changes due to neuronal activity, measuring

blood flow velocities, measuring temperature, and measuring the concentration of

metabolites. MRI is also the only way to directly image diffusion of water molecules

in vivo.

Since its invention more than 30 years ago, MRI has improved dramatically in

imaging quality and imaging speed. This has revolutionized diagnostic medicine.

Imaging speed is a major part of this revolution and is essential in many of the

MRI applications. One effort to improve imaging speed has been focusing on faster

data collection. This has been mainly achieved by improvements in MRI hardware,

development of fast pulse sequences and efficient scanning trajectories. However, we

are currently at the point where fundamental physical and physiological effects limit

our ability to simply encode data more quickly.

This fundamental limit has led many researchers to look for methods to reduce

the amount of acquired data without degrading image quality. These reduced sam-

pling methods are based on the fact the MRI data are redundant, so the underlying

1
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information may be extracted from fewer data than traditionally considered neces-

sary. One of the most significant clinical impacts of reduced sampling methods has

been accomplished by parallel imaging with multiple receiver channels [84,97]. Imag-

ing with multiple channels provides more useful data per MRI acquisition, so fewer

acquisitions are needed per scan. In recent years, more methods that exploit other

sources of redundancy are emerging. Methods such as [26, 39, 57, 70, 81, 107, 110, 111]

exploit modeled signal properties like spatial and temporal correlations. Methods

such as [61,76,106] learn the redundancy by analyzing the data itself.

A property that all images, including MRI, share to some degree is compressibil-

ity. It is well established that images can be substantially compressed with almost

no visual artifacts. Common compression methods like JPEG and JPEG2000 [103]

are based on sparse transform coding. They transform the image content to a sparse

representation where the information is concentrated in a few coefficients. Image

Compression is mostly conceived as a post-processing operation; First, acquire all

the data, then compress it for efficient storage and retrieval. However, recently a

new sampling theory called compressed sensing (CS) [11, 21] has emerged. Com-

pressed sensing implicitly compresses the data within the signal acquisition process

by obtaining fewer, so called, incoherent measurements. Images can be accurately

reconstructed from these measurements using several non-linear recovery processes.

The way data are acquired in MRI is compatible with the CS theory. The practical

result of CS in the context of MRI is that MR images require much less data for

reconstruction.

The contributions of this thesis are three methods for rapid imaging. The time-

optimal gradient waveform design method [65] is a fast acquisition approach. The idea

behind it is that for any fast imaging technique, the hardware should be maximally

exploited to collect data as fast as possible. The other two contributions are reduced

sampling approaches. Compressed sensing MRI [64,68] deals with the theoretical and

practical issued in applying CS to MRI, whereas the SPIR-iT method [69] introduces

a new concept of data consistency for parallel imaging with multiple receiver channels.

Even though it may seem that each of these methods is distinct, they were all
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motivated by the application of compressed sensing. The time-optimal gradient de-

sign method was originally developed as means to design fast randomized sampling

trajectories for CS. SPIR-iT was developed as a reconstruction framework to combine

CS with parallel imaging.

1.1 Thesis outline

Chapter 2 is a brief introduction to MRI. It provides the necessary basic background

about MR imaging for the following more advanced topics. It covers some basic MR

physics, hardware description, signal generation, signal reception, spatial encoding

and image generation.

Rapid imaging is about rapid collection of data. This is the topic of Chapter

3. There I develop in detail a method to design gradient waveforms that scan k-

space trajectories as fast as possible within the system constraints. Many gradient

designs have been presented before. Some are sub-optimal or are limited for specific

trajectories and specific applications. The proposed method provides a non-iterative,

computationally efficient, time-optimal solution for arbitrary k-space trajectories. It

provides an efficient way to design waveforms for any application, but in particular

designing randomized trajectories for the purpose of applying compressed sensing to

MRI.

In Chapter 4 I describe in detail the theory of compressed sensing and its ap-

plication to rapid MRI. I address the specific difficulties in applying the theory in

practice. I present some of the many possible application of CS to reduce scan time

and improve the spatial and temporal resolution of MRI.

In Chapter 5 I describe the SPIR-iT method, an iTerative Self-consistent Parallel

Imaging Reconstruction method. SPIR-iT formulates the parallel imaging recon-

struction through data consistency constraints. It is a general, optimal solution for

auto-calibrating parallel imaging from arbitrary k-space trajectories. It is also a gen-

eral framework for easily incorporating additional image priors, and in particular

sparsity/compressibility constraints.

Finally, in Chapter 6 I summarize the contributions of my work to rapid MRI,
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and provide some insights to possible future research directions.



Chapter 2

Principles of Magnetic Resonance

Imaging

2.1 Nuclear Magnetic Resonance Physics

The true description of the Nuclear Magnetic Resonance (NMR) phenomenon is quan-

tum mechanical in nature, but at the macroscopic scale it can be described quite

accurately using classical physics. In this thesis I will consider only the classical

description [4, 37, 62].

2.1.1 Polarization

The MRI signal is generated by protons in the body, mostly those in water molecules.

A strong static field B0 (See Fig. 2.1) polarizes the protons, yielding a net magnetic

moment oriented in the direction of the static field. It is this net magnetic moment,

or simply magnetization, which is manipulated and produces the NMR signal. The

field direction and its perpendicular plane are often referred to as the longitudinal

direction and the transverse plane.

5
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2.1.2 Bloch Equation

The interaction of the magnetization M with an external magnetic field B is governed

by the Bloch equation,

dM

dt
= M × γB +

M0 −Mz

T1

+
Mxy

T2

, (2.1)

where M0, Mz and Mxy are the equilibrium, longitudinal and transverse magnetization

and γ , T1 and T2 are constants and are specific to different materials and types of

tissues.

2.1.3 Resonance

Applying a radio frequency (RF) excitation field B1 (See Fig. 2.1) to the net magneti-

zation tips it and produces a magnetization component Mxy (or simply m), transverse

to the static field. The magnetization precesses at characteristic frequency

f0 =
γ

2π
B0.

Here f0 denotes the precession frequency, B0 the static field strength, and γ/2π is a

constant (42.57 MHz/T) [37]. A typical 1.5T clinical MR system has a frequency of

about 64 MHz. The transverse component of the precessing magnetization produces

a signal detectable by a receiver coil. The transverse magnetization at a position r

and time t is represented by the complex quantity m(r, t) = |m(r, t)| · e−iφ(r,t), where

|m(r, t)| is the magnitude of the transverse magnetization and φ(r, t) is its phase.

The phase indicates the direction of the magnetization on the transverse plane. The

transverse magnetization m(r) can represent many different physical properties of

tissue. One very intuitive property is the proton density of the tissue, but other

properties, like relaxation, can be emphasized as well. The image of interest in MRI

is m(r), the image of the spatial distribution of the transverse magnetization.
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2.1.4 Relaxation

While in the transverse plane, the magnetization over a period of time τ experiences

relaxation. The longitudinal component experiences exponential recovery Mz(t+τ) =

M0(1−e−τ/T1)+Mz(t) with a time constant T1. The transverse component experiences

exponential decay Mxy(t+τ) = Mxy(t)e
−τ/T2 with a time constant T2. The relaxation

parameters are one of the most important image contrast mechanisms as different

types of tissues have different relaxation parameters.

2.2 Magnetic Resonance Imaging Hardware

The key components of MRI are the interactions of the magnetization with three

types of magnetic fields (See Fig. 2.1) and the ability to measure these interactions.

2.2.1 The Static Magnetic Field B0

This field points in the longitudinal direction. Its strength determines the net mag-

netization and the resonance frequency. The field homogeneity is very important for

imaging. Inhomogeneity often results in image distortion artifacts. In most clini-

cal scanners the field is generated using a superconducting magnet, although some

systems use permanent magnets or electromagnets. The field strength for clinical

systems ranges from 0.3T to 7T.

2.2.2 Transverse Radio-Frequency Field B1

This field is a transverse radio-frequency (RF) field produced by coils tuned to the

Larmor frequency. This field is used to excite the magnetization from equilibrium

by tipping it from the longitudinal direction to the transverse plane. A typical body

RF-coil can produce a field strength of 1.6 · 10−5T .
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Figure 2.1: The magnetic fields used in MR imaging: The main homogeneous mag-
netic field B0 creates a net magnetization that precesses at a resonance frequency
γ
2π
B0. The transverse rotating radio-frequency field B1 is used for exciting the mag-

netization. The gradient fields G (only Gx is illustrated) are used for spatial encoding.

2.2.3 Receive Coils and Signal Reception

Magnetization that is excited to the transverse plane precesses at the Larmor fre-

quency. The precession creates a changing magnetic flux, which in turn (according

to Faraday’s law) induces a changing voltage in a receiver coil tuned to the Larmor

frequency. This voltage is the MR signal that is used for imaging. The received sig-

nal is the cumulative contribution from all the excited magnetization in the volume.

With only the homogeneous B0 field present, the system does not contain any spatial

information. The received signal is a complex harmonic with a single frequency peak

centered at the Larmor frequency..

2.2.4 Spatial Encoding Gradients

The spatial distribution information comes from three additional fields that vary spa-

tially. Three gradient coils, Gx, Gy and Gz create a linear variation in the longitudinal
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magnetic field strength as a function of spatial position. For example, when Gx is

applied, the magnetic field will vary with position B(x) = |B0| + Gxx. As a result,

the resonance frequency of the magnetization will vary in proportion to the gradient

field. This variation is used to resolve the spatial distribution as I will show next.

2.3 Imaging

2.3.1 Excitation and Selective Excitation

In general, a B1 RF field at the resonance frequency excites the whole volume. It is

possible through the use of the gradients to selectively excite a smaller portion of it, for

example only exciting a slice. The general idea is that only magnetization precessing

close to the resonance frequency is affected by the RF field, whereas magnetization

at distant frequencies is not affected. When a gradient field is applied, the resonance

frequency varies with position. If during that time, a B1 RF field with a limited

bandwidth (for example a sinc shaped envelope pulse) is applied, only magnetization

at a slice location corresponding to that frequency band is excited. Exciting a slice

limits the imaging spatial encoding to two dimension. Exciting a slab or a volume

requires three dimensional encoding.

2.3.2 Spatial Encoding and k-Space

As previously mentioned, MR systems can encode spatial information by superimpos-

ing the gradient fields on top of the strong static field. Going back to the Gx example,

when Gx is applied, the magnetic field will vary with position as B(x) = |B0|+Gxx.

This variation causes the precession frequency to vary linearly in space,

f(x) =
γ

2π
(|B0|+Gxx).

As a result, magnetization at positive x positions will precess at a higher frequency

than magnetization at negative x positions.
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Spatial encoding using gradients can be understood by a musical instrument anal-

ogy; the piano. The pitch of a piano note varies linearly with the position of the key

being struck; the sound one hears is the net sum of all notes emitted. A skilled mu-

sician listening to the emitted polyharmonic sound can hear which notes are playing

and say which keys were pressed (and how hard). The MR signal generated in the

presence of a gradient field is likewise a polyphonic mixture. The spatial positions

within the patient’s body are like piano keys and the emitted RF signal from each

position is like a “note”, with a frequency linearly varying with position. The poly-

harmonic MR signal superposes the different “notes”; they encode the spatial position

and the magnetization strength at those positions. A signal processing engineer can

immediately realize that there is a Fourier relation between the received MR signal

and the magnetization distribution and that the magnetization distribution can be

decoded by a spectral decomposition.

To see this Fourier relation more concretely consider the following: the gradient-

induced variation in precession frequency causes a location dependent phase disper-

sion to develop. The additional frequency contributed by gradient fields can be writ-

ten as

f(r) =
γ

2π
G(t) · r,

where G(t) is a vector of the gradient fields’ amplitudes. The phase of magnetization

is the integral of frequency starting from time zero (immediately following the RF

excitation):

φ(r, t) = 2π

∫ t

0

γ

2π
G(s) · rds

= 2πr · k(t),

where

k(t) ≡ γ

2π

∫ t

0

G(s)ds.

The receiver coil integrates over the entire volume, producing a signal

s(t) =

∫
R

m(r)e−i2πk(t)·r dr.
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This is the signal equation for MRI. In words, the received signal at time t is the

Fourier transform of the object m(r) sampled at the spatial frequency k(t). Such in-

formation is fundamentally encoded and very different than traditional optical imag-

ing where pixel samples are measured directly.

The design of an MRI acquisition method centers on developing the gradient wave-

forms G(t) that drive the MR system. These waveforms, along with the associated

RF pulses used to produce the magnetization, are called a pulse sequence. The inte-

gral of the G(t) waveforms traces out a trajectory k(t) in spatial frequency space, or

k-space. For illustration, consider the simple example in Fig. 2.2 where, immediately

after the RF excitation, a Gx gradient field is applied followed by a Gy gradient. The

phases of the magnetization are shown at different time points, along with the k-space

trajectory and the MR signal. This encoded sampling and the freedom in choosing

the sampling trajectory play a major role in making the compressed sensing idea in

chapter 4 ideas naturally applicable to MRI.

2.3.3 Image Acquisition

Constructing a single MR image commonly involves collecting a series of frames of

data, called acquisitions. In each acquisition, an RF excitation produces new trans-

verse magnetization, which is then sampled along a particular trajectory in k-space.

In principle, a complete MR image can be reconstructed from a single acquisition

by using a k-space trajectory that covers a whole region of k-space [5]. This is

commonly done in applications such as imaging brain activation. However, for most

applications this results in inadequate image resolution and excessive image artifacts.

Magnetization decays exponentially with time. This limits the useful acquisition

time window. Also, the gradient system performance and physiological constraints

limit the speed at which k-space can be traversed (See Fig. 2.2). These two effects

combine to limit the total number of samples per acquisition. As a result, most MRI

imaging methods use a sequence of acquisitions; each one samples part of k-space.

The data from this sequence of acquisitions is then used to reconstruct an image.
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2.3.4 Resolution and Field of View

Traditionally the k-space sampling pattern is designed to meet the Nyquist criterion,

which depends on the resolution and field of view (FOV) as shown in Fig. 2.3. Image

resolution is determined by the sampled region of k-space: a larger region of sampling

gives higher resolution. The supported field of view (FOV) is determined by the

sampling density within the sampled region: larger objects require denser sampling

to meet the Nyquist criterion. Violation of the Nyquist criterion causes the linear

reconstruction to exhibit artifacts. The appearance of such artifacts depends on the

details in the sampling pattern, as shown in Fig. 2.3.

2.3.5 k-space sampling trajectories

There is considerable freedom in designing the k-space trajectory for each acquisition.

Some 2D and 3D sampling trajectories are illustrated in Fig. 2.4. By far the most

popular trajectory uses straight lines from a Cartesian grid. Most pulse sequences

used in clinical imaging today are Cartesian. Reconstruction from such acquisitions

is wonderfully simple: apply the inverse Fast Fourier Transform (FFT). More impor-

tantly, reconstructions from Cartesian sampling are robust to many sources of system

imperfections.

While Cartesian trajectories are by far the most popular, many other trajectories

are in use, including sampling along radial lines and sampling along spiral trajectories.

Radial acquisitions are less susceptible to motion artifacts than Cartesian trajectories

[31], and can be significantly undersampled [92], especially for high contrast objects

[1,82]. Spirals make efficient use of the gradient system hardware, and are used in real-

time and rapid imaging applications [74]. Reconstruction from such non-Cartesian

trajectories is more complicated, requiring filtered back-projection algorithms [38] or

k-space interpolation schemes (e.g. gridding [48]).

2.3.6 Rapid Imaging

MR acquisition is inherently a process of traversing curves in multi-dimensional k-

space. The speed of k-space traversal is limited by physical constraints. In current
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systems, gradients are limited by maximum amplitude and maximum slew-rate (See

Fig. 2.2. In addition, high gradient amplitudes and rapid switching can produce pe-

ripheral nerve stimulation in patients [16]. Since this must be avoided, the physiology

of the patient provides a fundamental limit to gradient system performance.

Because sampling speed is fundamentally limited, many researchers are striving

to reduce the amount of acquired data without degrading image quality. Many such

efforts are inspired by the idea that MRI data are, or can be made to be, redundant.

Such redundancy can be created by design, for example, using multiple receiver coils

[84, 97], which provides more useful data per MR acquisition, so fewer acquisitions

are needed per scan. Redundancy can be a known or modeled signal property such

as spatial-temporal correlation [26,39,57,70,81,107,110,111] or a redundancy learned

and extracted from the data itself [61, 76,106].

In the following chapters I will present three methods for rapid imaging. They

are based on the three concepts just described. The first is a fast scanning approach.

It is a time-optimal gradient waveform design method. In fast imaging it is desirable

to exploit the hardware capabilities of the system as best as possible. The proposed

method provides the gradient waveforms that scan a k-space trajectory as fast as

possible within the hardware limits. The next methods, “Sparse MRI” and SPIR-iT

are reduced sampling approaches. Sparse MRI is based the theory of compressed

sensing as described in [11, 21]. It exploits the inherent compressibility of still and

dynamic MR images to vastly undersample the data. SPIR-iT, is a parallel imaging

method based on the data redundancy of imaging with multiple receiver coils. It is

an extension to the SENSE [84] and GRAPPA [35] reconstruction methods and is

based on forcing self consistency of the data (e.g., iTerative, Self-Consistent Parallel

imaging Reconstruction). SPIR-iT is also a framework for combining Sparse MRI

with parallel imaging.
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Figure 2.2: Fourier spatial encoding. The temporal MRI signal directly samples
the spatial frequency domain of the image. Gradient fields cause a linear frequency
distribution across the image, which produces a linear phase accrual with time. The
received signal samples are spatial frequencies of the image. The corresponding spatial
frequencies are proportional to the gradient waveform area. The gradient is limited
in amplitude, Gmax, and slew rate, Smax, which are both system specific.
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Figure 2.3: Image resolution is determined by the extent of the k-space that is covered.
The supported field of view is determined by the sampling density. Violation of the
Nyquist criteria results in aliasing interference in the image domain. The appearance
of the artifact depends on the sampling. Coherent folding is produced by equispaced
sampling and incoherent interference is produced by irregular sampling

Figure 2.4: Common sampling trajectories. Top, left to right: Cartesian 2D, Carte-
sian echo-planar, radial, spiral. Bottom left to right: Cartesian 3D, stack of radial,
3D radial, 3D stack of spirals
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Chapter 3

Time Optimal Gradient Design

3.1 Introduction

The recent advances in the field of MRI is a result of efforts in many fronts; gradient

hardware, high field systems, optimized receiver coil arrays, fast sequences and so-

phisticated reconstruction methods . These provide the ability to image faster than

ever. New acquisition methods are being explored in which k-space is scanned in

non-traditional trajectories [36, 66, 74, 79, 83, 91]. In particular, for the application of

compressed sensing and even parallel imaging, irregular randomized and incoherent

trajectories are desirable.

One of the design challenges in rapid imaging is to minimize the gradient waveform

duration, subject to both hardware and sequence constraints. The preferred solution

would be to design both the k-space trajectory and the gradient waveforms at the

same time. However, because of the complexity and the large number of control

variables, often only approximate heuristic methods [18, 75] are used as the optimal

solution is generally not tractable.

A simpler, more common approach is to first choose a sampling trajectory and

then design the gradient waveforms for it. For example, spirals are often designed

this way [30, 52, 55, 74]. In this approach, the problem is to find the gradient wave-

form that will traverse k-space from one point to another along a specific path and in

17
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minimum-time, while meeting the hardware gradient magnitude and slew-rate con-

straints. For trajectories such as linear, circular [43] or spirals [30, 52, 55, 74] the

solution is quite simple; first operate in the slew-rate limited regime till the maxi-

mum gradient is reached, and then operate in the maximum gradient regime. For

the general arbitrary trajectory, the solution is not simple anymore because there can

be numerous switching points between slew-limited acceleration, slew-limited decel-

eration and gradient-limited regimes. In the current literature, there is no general

methodology to design gradient waveforms for arbitrary trajectories that guarantees

time-optimality and is computationally inexpensive.

It is important to mention that some of the optimal designs that exist in the

literature either solve for 1D waveforms [95, 96], or provide waveforms that traverse

k-space from one point to another but not on a specific path [17, 40].

In this chapter I develop a fast and simple algorithm based on optimal control

theory that provides the complete solution to the time-optimal gradient waveform for

arbitrary k-space paths. Using this method a user need only prescribe a paramet-

ric curve in k-space (arbitrary parametrization) and the algorithm will output the

gradient waveform that traverses the k-space path in minimum time.

3.2 Curve Parametrization

I start by describing some properties of planar and volumetric curves that are essential

to the derivation of the time-optimal gradient waveform design.

Suppose we are given a specified path, curve, or trajectory C from C0 to C1 in

k-space. Suppose the curve C is described as a function of some parameter p:

C(p) = (x(p), y(p), z(p)) ∈ R3, p ∈ [0, pmax]. (3.1)

Here, p = 0 corresponds to the initial point and p = pmax corresponds to the end

point:

C(0) = C0, C(pmax) = C1.

The first derivative of the curve with respect to its parametrization is the velocity
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or tangent vector of the parametrization, which is denoted as

T (p) =
dC(p)

dp
= C ′(p). (3.2)

The second derivative of the curve with respect to its parametrization is the acceler-

ation vector of the parametrization

A(p) =
d2C(p)

dp2
= C ′′(p). (3.3)

From here onwards I denote h′(p) as the derivative of the function h with respect to

a general parameter p. I make an exception when using the notation ḣ to specifically

indicate that it is a time derivative.

A very useful parametrization is the Euclidean arc-length s parametrization:

C(s) = (x(s), y(s), z(s)), s ∈ [0, L], (3.4)

where L is the length of the path. This parametrization describes the coordinates as

a function of the Euclidean distance along the curve. An important property of this

parametrization is that it has unit velocity, i.e.,

|C ′(s)| = 1, (3.5)

for all s. Another important property is that the magnitude of the acceleration is the

curvature κ(s) of the curve, i.e.

|C ′′(s)| = κ(s). (3.6)

The curvature of the curve at a given point is the reciprocal of the radius of an

osculating circle that has the same first and second derivatives with the curve at that

point. Figure 3.1 illustrates the properties of the arc-length parametrization.

When a curve is given in an arbitrary parametrization C(p) = (x(p), y(p), z(p)), it
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Figure 3.1: Properties of the arc-length parametrization of a curve in R3.

is always possible to convert into the arc-length parametrization by using the relation

s(p) =

∫ p

0

|C ′(q)|dq. (3.7)

3.3 The Time-Optimal Gradient Waveform Design

Problem

In this chapter I aim to design a gradient waveform as a function of time. This is

equivalent to designing a time parametrization of the curve that describes the k-space

coordinates as a function of time. Specifically, I aim to design a time function p = s(t)

in the arc-length parametrization such that

s(0) = 0, s(T ) = L
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where T is the traversal time. The time trajectory in k-space is given by the composite

function C̃(t) = C(s(t)).

First, I derive the relation between the gradient waveform and the curve parametriza-

tion. The gradient waveform is proportional to the velocity in the time parametriza-

tion and is given by

g(t) = γ−1dC(s(t))

dt
= γ−1C ′(s(t))ṡ(t) (3.8)

where γ is the gyro-magnetic ratio. Here, I use ṡ(t) to indicate the time derivative of s.

The gradient slew-rate is proportional to the acceleration in the time parametrization.

Using the chain rule I obtain

ġ(t) = γ−1(C ′′(s(t))ṡ(t)2 + C ′(s(t))s̈(t)). (3.9)

The design variable in the MRI system is the gradient waveform. The gradients

are subject to hardware as well as sequence constraints. For the hardware constraints

I assume the frequently used slew-limited model as described in [40]. In this model,

the gradient amplitude is subject to the maximum amplitude of the system

|g(t)| ≤ Gmax, t ∈ [0, T ]. (3.10)

It is also subject to the maximum slew-rate of the system

|ġ(t)| ≤ Smax, t ∈ [0, T ]. (3.11)

For the sequence constraints, the gradient waveform is constrained to follow a specific

trajectory in k-space such that

C̃(t) = C0 + γ

∫ t

0

g(τ) dτ.

It is also constrained to have an initial value. For simplicity, I assume an initial value
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of

g(0) = 0.

Other optional sequence constraints such as final or intermediate values are possible,

but are not assumed here. I discuss some of these optional constraints later in this

section.

Now that I have derived the hardware as well as the sequence constraints, I con-

sider the problem of finding the time-optimal gradient waveform that satisfies them.

The time-optimal problem can be formulated as

minimize T

subject to |g(t)| ≤ Gmax, t ∈ [0, T ]

|ġ(t)| ≤ Smax, t ∈ [0, T ]

g(0) = 0

C̃(t) = C0 + γ
∫ t

0
g(τ) dτ, t ∈ [0, T ]

C̃(0) = C0

C̃(T ) = C1.

(3.12)

Here the variable is the gradient g(t) defined over the time interval [0, T ]. The objec-

tive is to minimize the traversal time T along the trajectory.

The time-optimal solution is always either gradient or slew-rate limited. Solving

for the time-optimal waveform in this formulation requires one to find the optimal

switching times between the maximum gradient and maximum slew-rate. This pro-

cedure is difficult for complex curves. Instead, I look at an alternative equivalent

formulation in which the solution becomes simpler.

3.4 Formulation in the Arc-Length Parametriza-

tion

Let s denote the arc length from the initial point. Because the k-space path is given

as a constraint, one needs only to design the time function s(t). Note that s is always
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INPUTS:

C(p) = {x(p), y(p), z(p)} - A k-space curve in an arbitrary parametrization p.

Gmax - Maximum gradient amplitude of the system.

Smax - Maximum slew-rate of the system.

OUTPUTS:

C?(t) - The k-space curve in a time-optimal parametrization t.

g?(t) - The time-optimal gradient waveforms.

I: Convert to arc-length parametrization.

1. Compute s(p) =
∫ p
0

∣∣∣dC(q)
dq

∣∣∣ dq.
2. Compute Ĉ(s) = C(p(s)) using the inverse of s(p).

II: Find gradient “velocity” v(s) as a function of arc length by integrating the ODE’s

1. Compute κ(s) = |Ĉ ′′(s)|.

2. Compute α(s) = min
{
γGmax,

√
γSmax
κ(s)

}
.

3. Define: β(s, ṡ) ≡
[
γ2S2

max − κ2(s)ṡ4
]1/2.

4. Integrate the ODE dv+(s)
ds =

{
1

v+(s)β(s, v+(s)) if v+(s) < α(s)
dα(s)
ds otherwise,

forward with the

initial condition v+(0) = 0.

5. Integrate the ODE dv−(s)
ds =

{
− 1
v−(s)β(s, v−(s)) if v−(s) < α(s)

−dα(s)
ds otherwise,

backwards with

the final condition v−(L) = v+(L).

6. Let v?(s) = min{v+(s), v−(s)}.

III: Convert to time parametrization, and compute the gradient waveforms.

1. Compute s?(t) using the inverse of t?(s) =
∫ s
0

dσ
v?(σ) .

2. Compute C?(t) = Ĉ(s?(t)).

3. Compute g?(t) = γ−1 dC
∗(t)
dt .

Table 3.1: Outline of the time-optimal gradient design algorithm.
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Figure 3.2: Example of stage I of the design algorithm: Conversion from arbitrary
parametrization to arc-length parametrization.
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Figure 3.3: Example of stage II of the design algorithm: Calculation of the time-
optimal “velocity” in the phase-plane.
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Figure 3.4: Example of stage III of the design algorithm: Conversion from the arc-
length parametrization to the time-optimal parametrization and the calculation of
the gradient waveforms. Note that either the gradient magnitude or the slew-rate are
maximized at every time-point, which is a necessary condition for time-optimality.
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increasing, so

ṡ(t) ≥ 0.

It follows from (3.5) and (3.8) that

|g(t)| = γ−1ṡ(t). (3.13)

This means that it is sufficient to design the gradient magnitude along the path.

I start with the formulation of the hardware constraints in the arc-length parametriza-

tion. It follows from (3.8), (3.9), (3.10), and (3.11) that

ṡ(t) ≤ α(s(t)) (3.14)

|s̈(t)| ≤ β(s(t), ṡ(t)) (3.15)

where

α(s) = min

{
γGmax,

√
γSmax

κ(s)

}
β(s, ṡ) =

[
γ2S2

max − κ2(s)ṡ4
]1/2

.

A complete derivation of (3.14) and (3.15) is deferred to the Appendix. Intuitively,

the constraint in (3.14) accounts for the geometry of the trajectory, and is related to

the maximum velocity at which a curve can be approached without violating the ac-

celeration constraint, and is independent of past or future velocities. Equation (3.15)

is a dynamic constraint: It is a differential inequality that describes the allowed change

in the velocity at a specific point on the path given the velocities in its proximity.

Finally, problem (3.12) can be equivalently formulated in the arc-length parametriza-

tion as
minimize T

subject to ṡ(t) ≤ α(s(t)), t ∈ [0, T ]

|s̈(t)| ≤ β(s(t), ṡ(t)), t ∈ [0, T ]

s(0) = 0, ṡ(0) = 0

s(T ) = L.

(3.16)
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Here the variable is the time function s(t). Once the optimal solution s?(t) of prob-

lem (3.16) is known, one can find the solution to the original problem (3.12) using

g?(t) = γ−1C ′(s?(t))ṡ?(t).

3.5 The Time-Optimal Solution in the Phase-Plane

Up until now, I have only provided the formulation of the problem. Here, I provide

a complete solution to (3.16). The solution is obtained in the velocity vs. arc-length

plane (ṡ vs. s). This plane is often referred to as the phase-plane in optimal-control

theory literature [47, 53, 94]. The outline is the following: I first find the optimal

velocity as a function of arc length (v?(s)) and then find the optimal time function

s?(t) which can be used to derive the optimal gradient waveform. (This reformulation

method has been used in solving time-optimal path planning problems for robotic

manipulators along specified paths [47,53,94].)

In the phase-plane, I represent the velocity as a function of arc length:

ṡ(t) = v(s(t)). (3.17)

Note that the traversal time T is a function of the velocity given by

T =

∫
dt =

∫
dt

ds
ds =

∫ L

0

1

ṡ
ds =

∫ L

0

1

v(s)
ds.

Also, note that the acceleration is also a function of the velocity given by

s̈ =
dṡ

ds

ds

dt
=
dṡ

ds
ṡ = v′(s)v(s).
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Then, the time-optimal control problem (3.16) amounts to solving the following op-

timization problem in the phase-plane:

minimize

∫ L

0

1

v(s)
ds.

subject to v(s) ≤ α(s), s ∈ [0, L]

|v′(s)| ≤ 1

v(s)
β(s, v(s)), s ∈ [0, L]

v(0) = 0

(3.18)

where the optimization variable is the function v(s) defined over [0, L].

The optimal solution v? to this problem describes the relation between the optimal

time function s? and its derivative in the phase-plane:

ṡ = v?(s).

Using this relation, I can readily recover s? from v?.

I now describe a complete solution to the optimization problem (3.18). In order

to find the optimal velocity, one needs to integrate two ordinary differential equations

(ODEs). The first ODE is given by

dv+(s)

ds
=


1

v+(s)
β(s, v+(s)) if v+(s) < α(s)

dα(s)
ds

otherwise,
(3.19)

which I integrate forward with the initial condition v+(0) = 0. The second ODE is

dv−(s)

ds
=

 −
1

v−(s)
β(s, v−(s)) if v−(s) < α(s)

−dα(s)
ds

otherwise,
(3.20)

which I integrate backwards with the final condition v−(L) = v+(L). (Recall that

α(s) and β(s, ṡ) are given in (3.15).)
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The optimal velocity v?(s) is simply given by

v?(s) = min{v+(s), v−(s)}. (3.21)

A proof of optimality is given in the Appendix.

3.6 The Time-Optimal Gradient Waveform Solu-

tion

Here I describe the procedure to recover the time-optimal gradient waveform g?(t)

from the optimal velocity v?(s). s?(t) can be obtained by computing the inverse

function of t?(s), using the relation

t?(s) =

∫ s

0

dσ

v?(σ)
.

In particular, the traversal time, which is the optimal value of (3.16), is given by

T ? =

∫ L

0

ds

v?(s)
.

It follows from (3.8) that the time-optimal gradient waveform is

g?(t) = γ−1dC(s?(t))

dt
. (3.22)

A summary of the design algorithm is given in table 3.1. Figs. 3.2 through 3.4

show a simplified example of the stages of the algorithm applied to a simple trajectory.

Figure 3.2 shows the transition from the arbitrary parametrization to the arc-length

parametrization. Figure 3.3 shows the calculation of the gradient “velocity” as a

function of arc length in the phase-plane. Figure 3.4 shows the transition from the

arc-length parametrization to the time parametrization and the calculation of the

gradient waveforms. Although the trajectory in Figs. 3.2-3.4 has little practical

value, it was chosen for its educational value as it shows clearly and simply the stages
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of the design.

3.7 Additional Constraints

To handle nonzero initial gradient g(0), it suffices to integrate the ODE (3.19) forward

with the initial condition v+(0) = γ|g(0)| instead of v+(0) = 0. However, if the value

of g(0) is infeasible, the outcome of the design will be the maximum feasible one.

In the same way, to handle final gradient value g(L), it suffices to integrate the

ODE (3.20) backward with the final condition v−(0) = γ|g(L)| instead of v−(L) =

v+(L). Again, if the value is infeasible, the outcome will be the maximum feasible

one.

In general, intermediate gradient and slew-rate magnitude constraint can be ap-

plied by replacing the constraints in Eq. (3.10) and Eq. (3.11) to be a function of

the arc length, s:

|g(t)| ≤ Gmax(s), t ∈ [0, T ], s ∈ [0, L] (3.23)

and

|ġ(t)| ≤ Smax(s), t ∈ [0, T ], s ∈ [0, L]. (3.24)

3.8 Examples

In this section I present a few examples demonstrating some of the applications of

the method to gradient waveform design.

The design algorithm was implemented in Matlab (The MathWorks, Inc., Natick,

MA, USA) and in the C programming language. All simulations were performed on a

Mandriva Linux workstation with an AMD Athlon 3800+ 64bit processor and 2.5GB

memory. Derivative operations were approximated by finite differences. Numerical

integrations were approximated by the trapezoid method. The ODEs were solved us-

ing a 4th order Runge-Kutte method [7]. I used the cubic-spline interpolation method
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Figure 3.5: Examples showing several k-space trajectories with their corresponding
time-optimal gradient waveforms and gradient magnitude and slew-rate. (a) A line.
(b) Dual density spiral. (c) Rosette trajectory. (d) Randomly perturbed variable
density spiral.
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for interpolating the curve when needed. In all the designs, I assumed gradients

capable of 40 mT/m, slew-rate of 150 mT/m/ms and a sampling rate of 4 µs.

3.8.1 A Line in k-space

As a sanity test I have applied the algorithm to a horizontal line in k-space. Con-

straining zero initial and final gradient amplitude I expected the resulting gradient

waveform to be a slew and gradient limited trapezoid. The k-space line was chosen to

be 10 cm−1 long. The result of the experiment are shown in Fig. 3.5a. As expected,

the resulting gradient waveform is a trapezoid. Note, that the trapezoid is either slew

limited or gradient limited, which guarantees time optimality in this simple case.

3.8.2 Dual Density Spiral Design

Spiral trajectories are used in real-time and rapid imaging applications. In some ap-

plications, for example MR fluoroscopy [98] and autocalibrated parallel imaging [42],

spirals with varying densities are desired. Here I demonstrate an alternative design

by a simple curve parametrization followed by the time-optimal gradient design.

The spiral is parametrized using the following equation

k = r · eiθ(r) (3.25)

θ(r) =
2π

Nitlv

∫ r

0

FOV (ρ)dρ, ,

where Nitlv is the number of spiral interleaves and FOV (r) is a function that describes

the supported field of view (FOV) as a function of radius in k-space.

To test the method, I designed a dual density spiral with 16 interleaves, 0.83mm

resolution (maximum k-space radius of 6cm−1), a FOV of 55cm for r ∈ [0, 1.2]cm−1

and 10cm for r ∈ [1.8, 6]cm−1. The transition region of r ∈ [1.2, 1.8]cm−1 was linearly

interpolated. The results of the design for a single interleaf are presented in Fig. 3.5b.

As expected the gradient waveforms are gradient and slew limited. The transition

between the two density regions is clearly seen in the magnitude gradient plot.
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3.8.3 Time-Optimal Rosette Trajectory Design

The rosette trajectory was first introduced in [79] as a spectrally selective imaging

method. Because of the multiple crossings of the trajectory, off-resonance often causes

destructive interference and therefore off-resonance voxels do not show up in the

image. Recently, rosettes have been reconsidered as a rapid sampling trajectory

for CS-MRI with application to hyperpolarized 13C imaging [9], where scan time is

crucial.

In [79] Noll describes rosettes as the parametric curve in time

k(t) = kmax sin(ω1t)e
iω2t. (3.26)

The gradient waveforms according to Noll are

G(t) =
1

γ

d

dt
k(t)

=
kmax

2γ
((ω1 + ω2)e

i(ω1+ω2)t

+(ω1 − ω2)e
−i(ω1−ω2)t. (3.27)

The advantage of this design is that there is an analytic expression for the gradient

waveform, and no further calculations are needed. However, it has a couple of limi-

tations. The first is that the waveforms are neither gradient limited nor slew limited

and are not time-optimal. The scan efficiency is especially reduced when designing

high resolution trajectories, where the waveforms constraints are set mostly by the

maximum gradient amplitude. The second is that at t = 0, Eq. (3.27) does not

have a zero value, therefore a correction is needed to ramp the gradients from zero

initial value to meet the slew-rate constraints. Instead, I use the parametrization

of Eq. (3.26) and apply the design method to get the desired time-optimal gradient

waveforms. To test the design I used ω1 = 1.419, ω2 = 0.8233, kmax = 12 as the

parameters in Eq. (3.26). The results of applying the proposed design are presented

in Fig. 3.5c. The faint lines in the figure show the result for Noll’s design. The figure

shows that as expected, the waveforms of the proposed method are gradient and slew
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limited. It also shows that for this specific trajectory Noll’s design requires a traversal

time of 11.32 ms. This is a 20% increase over the time-optimal design which requires

only 9.46 ms.

3.8.4 Randomized Trajectories for Compressed Sensing Ap-

plication

It was shown in [66] that under-sampled randomly perturbed spiral trajectories can

provide faster imaging when used with a special non-linear reconstruction. When

under-sampling to save scan time, it is essential that the gradient waveforms be time-

optimal. Therefore, I applied the design algorithm to a randomly perturbed vari-

able density spiral where the optimal waveform requires numerous switching between

acceleration-deceleration slew-rate limited regions and gradient magnitude limited re-

gions. I designed a 4 interleave variable density spiral, chosen to have a resolution

of 1 mm and a FOV of 20 cm at the k-space origin, that linearly decreases to 5 cm

on the periphery. The spiral was perturbed in the radial direction by a randomly

generated smooth waveform Figure 3.5d shows the result of the randomly perturbed

spiral design. Again, as expected the waveforms are gradient and slew limited.

3.9 Discussion

The results in the previous section show the main advantage of the proposed design

method; it can be applied to any type of k-space trajectory: from simple rectilinear

to the complicated randomized trajectories. The trajectory and gradient design is

simplified to designing a parametric curve, and then designing the gradients for it.

The latter, is also a disadvantage of the method, since a poor choice of trajectory

that has sharp curvatures may lead to a poor design. Nevertheless, as shown in the

examples, the simplicity and generality of the method makes it a powerful design tool.
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3.9.1 Numerical Issues

The differential equations Eq. (3.19) and Eq. (3.20) have the gradient magnitude in

the denominator. When the gradient magnitude is very small, the right hand side of

the equation can become very large and cause inaccuracies in the integration. This

can be mitigated by choosing a smaller step size, which increases the computation

time and memory consumption. However, since slowing gradients are associated with

large curvature locations in the k-space trajectory that are known in advance, one

can use a variable step size that is adapted to the curvature.

3.9.2 Computational Complexity

The proposed method is non-iterative and provides a direct time-optimal solution.

The computational complexity is linear with respect to the length of the trajectory

curve, and requires a solution to an ODE propagated forward and backwards in time.

The implementation used a fixed step 4th order Runge-Kutte method, which required

a relatively small step size to maintain accuracy. Nevertheless, the C programming

language implementation required about half a second to design the waveforms in the

examples.

3.10 Conclusions

I have provided a fast, simple and non-iterative method for designing the time-optimal

gradient waveforms for any k-space trajectory. It is the complete solution for the

gradient waveform design with a k-space path constraint. I have demonstrated some

simple time-optimal waveforms by first designing a parametric curve and using the

design method to produce the gradient waveforms.



Chapter 4

Compressed Sensing MRI

4.1 Introduction

Imaging speed is important in many MRI applications. However, the speed at which

data can be collected in MRI is fundamentally limited by physical (gradient am-

plitude and slew-rate) and physiological (nerve stimulation) constraints. Therefore

many researchers are seeking methods to reduce the amount of acquired data without

degrading the image quality.

When k-space is undersampled, the Nyquist criterion is violated, and Fourier re-

constructions exhibit aliasing artifacts. Many previous proposals for reduced data

imaging try to mitigate undersampling artifacts. They fall in three groups: (a) Meth-

ods generating artifacts that are incoherent or less visually apparent, at the expense

of reduced apparent SNR [32,72,82,92,104]; (b) Methods exploiting redundancy in k-

space, such as partial-Fourier, parallel imaging etc. [73,84,97]; (c) Methods exploiting

either spatial or temporal redundancy or both [58,70,77,106,108].

This chapter’s aim is to exploit the sparsity which is implicit in MR images, and

develop an approach combining elements of approaches a and c. Implicit sparsity

means transform sparsity, i.e., the underlying object of interest happens to have a

sparse representation in a known and fixed mathematical transform domain. To be-

gin with, consider the identity transform, so that the transform domain is simply

the image domain itself. Here sparsity means that there are relatively few significant

37
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pixels with nonzero values. For example, angiograms are extremely sparse in the

pixel representation. More complex medical images may not be sparse in the pixel

representation, but they do exhibit transform sparsity, since they have a sparse rep-

resentation in terms of spatial finite differences, in terms of their wavelet coefficients,

or in terms of other transforms.

Sparsity is a powerful constraint, generalizing the notion of finite object support.

It is well understood why support constraints in image space (i.e., small FOV or band-

pass sampling) enable sparser sampling of k-space. Sparsity constraints are more

general because nonzero coefficients do not have to be bunched together in a specified

region. Transform sparsity is even more general because the sparsity needs only to be

evident in some transform domain, rather than in the original image (pixel) domain.

Sparsity constraints, under the right circumstances, can enable sparser sampling of

k-space as well [11,21].

The possibility of exploiting transform sparsity is motivated by the widespread

success of data compression in imaging. Natural images have a well-documented sus-

ceptibility to compression with little or no visual loss of information. Medical images

are also compressible [56]. Underlying the most well-known image compression tools

such as JPEG, and JPEG-2000 [103] are the Discrete Cosine transform (DCT) and

wavelet transform. These transforms are useful for image compression because they

transform image content into a vector of sparse coefficients; a standard compression

strategy is to encode the few significant coefficients and store them, for later decoding

and reconstruction of the image.

The widespread success of compression algorithms with real images raises the

following questions: Since the images intend to be acquired will be compressible,

with most transform coefficients negligible or unimportant, is it really necessary to

acquire all that data in the first place? Can we not simply measure the compressed

information directly from a small number of measurements, and still reconstruct the

same image which would arise from the fully sampled set? Furthermore, since MRI

measures Fourier coefficients, and not pixels, wavelet or DCT coefficients, the question

is whether it is possible to do the above by measuring only a subset of k-space.
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A substantial body of mathematical theory has recently been published establish-

ing the possibility to do exactly this. The formal results can be found by searching for

the phrases compressed sensing (CS) or compressive sampling [11, 21]. According to

these mathematical results, if the underlying image exhibits transform sparsity, and if

k-space undersampling results in incoherent artifacts in that transform domain, then

the image can be recovered from randomly undersampled frequency domain data,

provided an appropriate nonlinear recovery scheme is used.

4.2 Compressed Sensing

CS was first proposed in the literature of Information Theory and Approximation

Theory in an abstract general setting. One measures a small number of random

linear combinations of the signal values – much smaller than the number of signal

samples nominally defining it. The signal is reconstructed with good accuracy from

these measurements by a non-linear procedure. Sampling in MRI is a special case

of CS, where the sampled linear combinations are simply individual Fourier coeffi-

cients (k-space samples). In that setting, CS is claimed to be able to make accurate

reconstructions from a small subset of k-space, rather than an entire k-space grid.

The CS approach requires that: (a) the desired image have a sparse representation

in a known transform domain (i.e., is compressible), (b) the aliasing artifacts due to

k-space undersampling be incoherent (noise like) in that transform domain. (c) a non-

linear reconstruction be used to enforce both sparsity of the image representation and

consistency with the acquired data. To help keep in mind these ingredients, consider

Fig. 4.1, which depicts relationships among some of these main concepts. It shows

the image, the k-space and the transform domains, the operators connecting these

domains and the requirements for CS.

4.2.1 A simple, intuitive example of compressed sensing

To get intuition for the importance of incoherence and the feasibility of CS in MRI,

consider the example in Fig. 4.2. A sparse 1D signal (Fig. 4.2a), 256 samples long, is
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Figure 4.1: Illustration of the domains and operators used in the chapter as well as
the requirements of CS: sparsity in the transform domain, incoherence of the under-
sampling artifacts and the need for nonlinear reconstruction that enforces sparsity.
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undersampled in k-space (Fig. 4.2b) by a factor of eight. Here, the sparse transform

is simply the identity. Later, I will consider the case where the transform is nontrivial.

Equispaced k-space undersampling and reconstruction by zero-filling results in

coherent aliasing, a superposition of shifted replicas of the signal as illustrated in Fig.

4.2c. In this case, there is an inherent ambiguity; it is not possible to distinguish

between the original signal and its replicas, as they are all equally likely.

Random undersampling results in a very different situation. The zero-filling

Fourier reconstruction exhibits incoherent artifacts that actually behave much like

additive random noise (Fig. 4.2d). Despite appearances, the artifacts are not noise;

rather, undersampling causes leakage of energy away from each individual nonzero

coefficient of the original signal. This energy appears in other reconstructed signal

coefficients, including those which had been zero in the original signal.

It is possible, if all the underlying original signal coefficients are known, to cal-

culate this leakage analytically. This observation enables the signal in Fig. 4.2d to

be accurately recovered although it was 8-fold undersampled. An intuitive plausible

recovery procedure is illustrated in Fig. 4.2e-h. It is based on thresholding, recovering

the strong components, calculating the interference caused by them and subtracting

it. Subtracting the interference of the strong components reduces the total interfer-

ence level and enables recovery of weaker, previously submerged components. By

iteratively repeating this procedure, one can recover the rest of the signal compo-

nents. A recovery procedure along these lines was proposed by Donoho et. al [24] as

a fast approximate algorithm for CS reconstruction.

4.3 Sparsity

There are two ways to express the mathematical notion of sparsity of a vector of

coefficients. In strong sparsity most of the coefficients are required to be exact zeros;

this can be quantified by the fraction of nonzero entries. In weak sparsity most of

the coefficients are very small, but need not be exactly zero; this can be quantified

by the rate at which the sorted nonzero amplitudes decay. For real data, it is rare

for transform coefficients to be exactly zero; hence, in MR imaging weak sparsity is
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Figure 4.2: An intuitive reconstruction of a sparse signal from pseudo-random k-
space undersampling. A sparse signal (a) is 8-fold undersampled in k-space (b).
Equispaced undersampling results in coherent signal aliasing (c) that can not be
recovered. Pseudo-random undersampling results in incoherent aliasing (d). Strong
signal components stick above the interference, are detected (e) and recovered (f) by
thresholding. The interference of these components is computed (g) and subtracted
(h), lowering the total interference level and enabling recovery of weaker components.
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the better model. For mathematical analysis in compressed sensing, the conclusions

are frequently stronger and the arguments more transparent when assuming strong

sparsity, so it is helpful to keep both models in mind.

4.3.1 Sparsifying Transform

A sparsifying transform is an operator mapping a vector of image data to a sparse

vector. In recent years, there has been extensive research in sparse image represen-

tation. As a result we currently possess a library of diverse transformations that can

sparsify many different type of images [100].

For example, piecewise constant images can be sparsely represented by spatial

finite-differences (i.e., computing the differences between neighboring pixels) ; indeed,

away from boundaries, the differences vanish. Real-life MR images are of course not

piecewise smooth. But in some problems, where boundaries are the most important

information (angiograms for example) computing finite-differences results in a sparse

representation.

Natural, real-life images are known to be sparse in the discrete cosine transform

(DCT) and wavelet transform domains [10, 29, 80, 103]. The DCT is central to the

JPEG image compression standard and MPEG video compression, and is used bil-

lions of times daily to represent images and videos. The wavelet transform is used in

the JPEG-2000 image compression standard [103]. The wavelet transform is a multi-

scale representation of the image. Coarse-scale wavelet coefficients represent the low

resolution image components and fine-scale wavelet coefficients represent high reso-

lution components. Each wavelet coefficient carries both spatial position and spatial

frequency information at the same time (see Fig. 4.5b (top) for a spatial position and

spatial frequency illustrations of a mid-scale wavelet coefficient).

Since computing finite-differences of images is a high-pass filtering operation, the

finite-differences transform can also be considered as computing some sort of fine-scale

wavelet transform (without computing coarser scales).

Sparse representation is not limited to still imagery. Many still images can be

compressed 5 to 10-fold without perceptible loss of visual information, but often videos



44 CHAPTER 4. COMPRESSED SENSING MRI

can safely be compressed much more heavily. This is demonstrated by the success

of MPEG, which uses the fact that some parts of a movie are either constant or

else undergo motion that is similar between neighboring pixels. Inter-frame temporal

differences of video content are often sparse, so movies are sparsified by temporal finite

differences. Dynamic MR images are highly compressible as well. For example, heart

images are quasi-periodic. Therefore, their temporal Fourier transform is sparse. The

hemodynamic response of brain activation in some functional MRI experiments can

also be sparsified by temporal Fourier transform.

4.3.2 The Sparsity of MR Images

The transform sparsity of MR images can be demonstrated by applying a sparsifying

transform to a fully sampled image and reconstructing an approximation to the image

from a subset of the largest transform coefficients. The sparsity of the image is the

percentage of transform coefficients sufficient for diagnostic-quality reconstruction. Of

course the term ‘diagnostic quality’ is subjective. Nevertheless for specific applications

it is possible to get an empirical sparsity estimate by performing a clinical trial and

evaluating reconstructions of many images quantitatively or qualitatively.

To illustrate this, consider Fig. 4.3 in which a typical brain image was compressed

with wavelets, a slice of an angiogram was compressed with finite-differences, and the

time series of a cross section of a dynamic heart sequence was compressed by temporal

Fourier transform. The important information is captured by 10%, 5% and 5% of the

largest transform coefficients, respectively.

4.4 Incoherent Sampling

“Randomness is too important to be left to chance”

Incoherent aliasing interference in the sparse transform domain is an essential ingre-

dient for CS. This can be well understood from the previous simple 1D example. In

the original CS papers [11, 21], sampling a completely random subset of k-space was

chosen to simplify the mathematical proofs and in particular to guarantee a very high
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Figure 4.3: Transform sparsity of MR images. Fully sampled images (left) are mapped
by a sparsifying transform to a transform domain (middle); the several largest coeffi-
cients are preserved while all others are set to zero; the transform is inverted forming
a reconstructed image (right).
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degree of incoherence.

Random point k-space sampling in all dimensions is generally impractical as the

k-space trajectories have to be relatively smooth due to hardware and physiological

considerations. Instead, the aim is to design a practical incoherent sampling scheme

that mimics the interference properties of pure random undersampling as closely as

possible yet allows rapid collection of data.

There are numerous ways to design incoherent sampling trajectories. In order to

focus and simplify the discussion, I consider mostly the case of Cartesian grid sam-

pling where the sampling is restricted to undersampling the phase-encodes and fully

sampled readouts. In addition, I briefly discuss alternative non-Cartesian sampling

trajectories.

I focus on Cartesian sampling because it is by far the most widely used in practice.

It is simple and also highly robust to numerous sources of imperfection. Non-uniform

undersampling of phase encodes in Cartesian imaging has been proposed in the past as

an acceleration method because it produces incoherent artifacts [32,72,104]– exactly

what is necessary. Undersampling phase-encode lines offers pure randomness in the

phase-encode dimensions, and a scan time reduction that is exactly proportional to

the undersampling. Finally, implementation of such an undersampling scheme is

simple and requires only minor modifications to existing pulse sequences.

4.4.1 PSF and TPSF Analysis

When designing an incoherent sampling trajectory, how does one guarantee that the

choice of sampling is indeed incoherent? Is choosing indices at random “incoherent

enough”? Is one random choice better than other choices? In order to answer these

questions, one needs a metric to evaluate the incoherence of the aliasing interference.

The point spread function (PSF) is a natural tool to measure incoherence. Let Fu
be the undersampled Fourier operator and let ei be the ith vector of the natural basis

(i.e., having ‘1’ at the ith location and zeroes elsewhere). Then PSF (i; j) = e∗jF∗uFuei
measures the contribution of a unit-intensity pixel at the ith position to a pixel at

the jth position. Under Nyquist sampling there is no interference between pixels
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and PSF (i; j)|i 6=j = 0. Undersampling causes pixels to interfere and PSF (i; j)|i 6=j to

assume nonzero values. A simple measure to evaluate the incoherence is the maximum

of the sidelobe-to-peak ratio (SPR), maxi 6=j

∣∣∣PSF (i,j)
PSF (i,i)

∣∣∣.
The PSF of pure 2D random sampling, where samples are chosen at random from

a Cartesian grid, offers a standard for comparison. In this case PSF (i; j)|i 6=j looks

random as illustrated in Fig. 4.5a. Empirically, the real and the imaginary parts

separately behave much like zero-mean random white Gaussian noise as illustrated

in Fig. 4.4. The standard deviation of the observed SPR depends on the number, N ,

of samples taken and the number, D, of grid points defining the underlying image.

For a constant sampling reduction factor p = D
N

the standard deviation obeys the

formula:

σSPR =

√
p− 1

D
. (4.1)

Eq. 4.1 is easily derived. The total energy in the PSF is N
D

and the energy of the

main lobe is
(
N
D

)2
. The off-center energy is therefore N

D
−
(
N
D

)2
. Normalizing by the

number of off-center pixels and also by the main lobe’s energy and setting p = D
N

we

get Eq. 4.1.

The MR images of interest are typically sparse in a transform domain rather than

the usual image domain. In such a setting, incoherence is analyzed by generaliz-

ing the notion of PSF to Transform Point Spread Function (TPSF) which measures

how a single transform coefficient of the underlying object ends up influencing other

transform coefficients of the measured undersampled object.

Let Ψ be an orthogonal sparsifying transform (non-orthogonal TPSF analysis is

beyond the scope and is not discussed here). The TPSF (i; j) is given by the following

equation,

TPSF (i; j) = e∗jΨF∗uFuΨ∗ei . (4.2)

In words, a single point in the transform space at the ith location is transformed

to the image space and then to the Fourier space. The Fourier space is subjected

to undersampling, then transformed back to the image space. Finally, a return is

made to the transform domain and the jth location of the result is selected. An

example using an orthogonal wavelet transform is illustrated by Fig. 4.5b. The size
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Figure 4.4: Empirical statistical evaluation of interference in the PSF for pure ran-
dom sampling. 1D PSF, 2048 samples, 4-fold undersampling. left: Histogram, show-
ing a Gaussian distribution of the off-center point-spread function. right: Quantile-
Quantile plot (QQ plot) of the off-center point spread versus standard normal dis-
tribution. In such a QQ plot, if samples come from a normal distribution, the plot
is linear. In this case, the plot is indeed close to linear, and therefore the sidelobe
values have an approximately normal distribution.
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of the sidelobes in TPSF (i; j)|i 6=j are used to measure the incoherence of a sampling

trajectory. A small TPSF (i; j)|i 6=j with random noise-like statistics is desirable.

4.4.2 Single-slice 2DFT, multi-slice 2DFT and 3DFT Imag-

ing

Equipped with the PSF and TPSF analysis tools, I consider three cases of Cartesian

sampling: 2DFT, multi-slice 2DFT and 3DFT. In single-slice 2DFT, only the phase

encodes are undersampled and the interference spreads only along a single dimension.

The interference standard deviation as calculated in Eq. 4.1 is D1/4 times larger than

the theoretical pure random 2D case for the same acceleration – (16 times for a

256× 256 image). Therefore in 2DFT one can expect relatively modest accelerations

because mostly 1D sparsity is exploited.

In multi-slice 2DFT sampling is done in a hybrid k-space vs. image space (ky − z
space). Undersampling differently the phase-encodes of each slice randomly under-

samples the ky − z space. This can reduce the peak sidelobe in the TPSF of some

appropriate transforms, such as wavelets, as long as the transform is also applied in

the slice dimension. Hence, it is possible to exploit some of the sparsity in the slice

dimension as well. Figure 4.6a-b shows that undersampling each slice differently has

reduced peak sidelobes in the TPSF compared to undersampling the slices the same

way. However, it is important to mention that for wavelets, randomly undersampling

in the hybrid ky − z space is not as effective, in terms of reducing the peak side-

lobes, as randomly undersampling in a pure 2D k-space (Fig. 4.6c). The method

of multi-slice 2DFT will work particularly well when the slices are thin and finely

spaced. When the slices are thick and with gaps, there is little spatial redundancy

in the slice direction and the performance of the reconstruction would be reduced to

the single-slice 2DFT case. Undersampling with CS can be used to bridge gaps or

acquire more thinner slices without compromising the scan time.

Randomly undersampling the 3DFT trajectory is the preferred method. Here, it is

possible to randomly undersample the 2D phase encode plane (ky−kz) and achieve the

theoretical high degree of 2D incoherence. Additionally, 2D sparsity is fully exploited,
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Figure 4.5: (a) The PSF of random 2D k-space undersampling. (b) The wavelet
TPSF of random 2D Fourier undersampling. FDWT and IDWT stand for forward
and inverse discrete wavelet transform. Wavelet coefficients are band-pass filters and
have limited support both in space and frequency. Random k-space undersampling
results in incoherent interference in the wavelet domain. The interference spreads
mostly within the wavelet coefficients of the same scale and orientation.
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Figure 4.6: Transform point spread function (TPSF) analysis in the wavelet domain.
The k-space sampling patterns and the associated TPSF of coarse-scale and fine-scale
wavelet coefficients are shown. (a) Random phase encode undersampling spreads
the interference only in 1D and mostly within the same wavelet scale. The result is
relatively high peak interference. (b) Sampling differently for each slice, i.e., randomly
undersampling the ky− z plane causes the interference to spread to nearby slices and
to other wavelets scales and reduces its peak value. (c) Undersampling the phase
encode plane, i.e., ky − kz spreads the interference in 2D and results in the lowest
peak interference.

and images have a sparser representation in 2D. 3D imaging is particularly attractive

because it is often time consuming and scan time reduction is a higher priority than

2D imaging. Figure 4.6c illustrates the proposed undersampled 3DFT trajectory and

its wavelet TPSF. The peak interference of the wavelet coefficients is significantly

reduced compared to multi-slice and plain 2DFT undersampling.

4.4.3 Variable Density Random Undersampling

The incoherence analysis so far assumes the few non-zeros are scattered at random

among the entries of the transform domain representation. Representations of natural

images exhibit a variety of significant non-random structures. First, most of the
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energy of images is concentrated close to the k-space origin. Furthermore, using

wavelet analysis one can observe that coarse-scale image components tend to be less

sparse than fine-scale components. Figure 4.7a. shows that uniformly undersampling

at random affects coarse scale coefficients more than fine scale. The coarse scale

wavelet coefficients are mostly submerged in the interference, resulting in coherent

low-resolution interference in the image.

These observations show that, for a better performance with ‘real images’, one

should be undersampling less near the k-space origin and more in the periphery of k-

space. For example, one may choose samples randomly with sampling density scaling

according to a power of distance from the origin. Empirically, using density powers

of 1 to 6 greatly reduces the total interference and, as a result, iterative algorithms

converge faster with better reconstruction. The optimal sampling density is beyond

the scope of this thesis, and should be investigated in future research. Figure 4.7b

shows that using a variable density scheme significantly reduces the interference in

the coarse scale, achieving an overall better coherence property.

4.4.4 Other Incoherent Sampling Schemes

Getting completely away from a Cartesian grid allows far greater flexibility in design-

ing sampling trajectories with low coherence. Popular non-Cartesian schemes include

sampling along radial lines or spirals. Traditionally, undersampled radial trajecto-

ries have been used [1, 82, 92] to accelerate acquisitions, because the artifacts from

linear reconstruction seem benign and incoherent – much like adding noise to the

image. Variable-density spirals [60, 104] and also variable density Cartesian acqui-

sitions [32, 72, 78] have been proposed for similar reasons. From ones perspective,

it is recognized that such artifacts are benign because the corresponding PSFs are

incoherent. Figure 4.8c-f shows the PSF of several such trajectories: radial, uniform

spirals, variable density spirals and variable density perturbed spirals. These trajec-

tories are strong candidates for CS: with appropriate nonlinear reconstruction, the

seeming noise-like artifacts can be suppressed without degrading image quality.
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Figure 4.7: (a) For natural images, uniform random undersampling often results in
coherent interference. This is attributed to large interference of coarse scale wavelet
coefficients. (b) Variable density undersampling, reduces the interference in the coarse
scales, effectively achieving better coherence properties.
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Figure 4.8: Point Spread Functions (PSF) of various sampling trajectories. (a) Ran-
dom lines in 2D (b) Random points in 2D, or cross-section of random lines in 3D (c)
Radial (d) Uniform spirals (e) Variable density spirals (f) Variable density perturbed
spirals
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4.4.5 Dynamic Incoherent Sampling: k-t Sparse

A dynamic sequence of images is a multi-dimensional signal with two or three spa-

tial coordinates and time as an additional dimension (See Fig. 4.9 top-left panel).

Dynamic MRI data are acquired in the spatial frequency vs time (k − t) domain.

Traditional collection schemes sample the k − t domain on a regular set of congru-

ent lines (Fig. 4.9 top-right). Often, it is impossible to meet the spatio-temporal

Nyquist-rate this way. Then, sub-Nyquist sampling, followed by linear reconstruc-

tion, causes coherent aliasing of the signal in the spatial-temporal frequency (x− f)

domain. As an alternative, randomly ordering a subset of k-space lines (Fig. 4.9

bottom-right) is incoherent with respect to the x − f domain and produces benign

artifacts in linear reconstructions [81]. So random ordering of lines is an effective and

inexpensive way to incoherently sample dynamic data. Of course, the same ideas of

random ordering apply to non-Cartesian sampling such as radial lines and spirals,

improving incoherence and better exploiting the hardware.

Dynamic imaging CS has major advantages over static imaging: sequences of

images, like videos, are highly compressible – much more than static images as il-

lustrated in both Figs. 4.3 and 4.9 bottom-left panel. At the same time, dynamic

imaging requires several orders of magnitude more samples than static imaging and it

is often impossible to meet the Nyquist rate. CS compensates for this by incoherent

sampling and by exploiting the inherent sparsity of the dynamic sequence.

4.4.6 How Many Samples to Acquire?

A theoretical bound on the number of Fourier sample points that need be collected

with respect to the number of sparse coefficients is derived in [11, 21]. However, I as

well as other researchers have observed that in practice, for a good reconstruction,

the number of k-space samples should be roughly two to five times the number of

sparse coefficients (The number of sparse coefficients can be calculated in the same

way as in the The Sparsity of MR Images section). The results, presented in this

chapter, support this claim. Similar observations were reported by Candès et al. [13]

and by [105].
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Figure 4.9: Top left:Dynamic MRI is a multi-dimensional signal with two or three
spatial coordinates and time as an additional dimension. Bottom left: Dynamic
images have a sparse representation in an appropriate transform domain. Top right:
Traditional k− t sequential sampling. Bottom right: Random ordering is an efficient
way to incoherently sample the k − t space.
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4.4.7 Monte-Carlo Incoherent Sampling Design

Finding an optimal sampling scheme that maximizes the incoherence for a given

number of samples is a combinatorial optimization problem and might be considered

intractable. However, choosing samples at random often results in a good, incoher-

ent, near-optimal solution. Therefore I propose the following Monte-Carlo design

procedure: Choose a grid size based on the desired resolution and FOV of the ob-

ject. Undersample the grid by constructing a probability density function (pdf) and

randomly draw indices from that density. Variable density sampling of k-space is con-

trolled by the pdf construction. A plausible choice is diminishing density according

to a power of distance from the origin as previously discussed. Because the procedure

is random, one might accidentally choose a sampling pattern with a “bad” TPSF .

To prevent such situation, repeat the procedure many times, each time measure the

peak interference in the TPSF of the resulting sampling pattern. Finally, choose the

pattern with the lowest peak interference. Once a sampling pattern is determined it

can be used again for future scans.

4.5 Image Reconstruction

4.5.1 Formulation

I now describe in more detail the processes of nonlinear image reconstruction appro-

priate to the CS setting. Suppose the image of interest is a vector m, let Ψ denote

the linear operator that transforms from pixel representation into a sparse represen-

tation, and let Fu be the undersampled Fourier transform, corresponding to one of

the k-space undersampling schemes discussed earlier. The reconstruction is obtained

by solving the following constrained optimization problem:

minimize ||Ψm||1 (4.3)

s.t. ||Fum− y||2 < ε
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Here m is the reconstructed image, where y is the measured k-space data from the

scanner and ε controls the fidelity of the reconstruction to the measured data. The

threshold parameter ε is usually set below the expected noise level.

The objective function in Eq. 4.3 is the `1 norm, which is defined as ||x||1 =∑
i |xi|. Minimizing ||Ψm||1 promotes sparsity [15]. The constraint ||Fum− y||2 < ε

enforces data consistency. In words, among all solutions which are consistent with

the acquired data, Eq. 4.3 finds a solution which is compressible by the transform Ψ.

When finite-differences operator is used as a sparsifying transform, the objective

in Eq. 4.3 is often referred to as Total-Variation (TV) [87], since it is the sum of the

absolute variations in the image. The objective then is usually written as TV (m).

Even when using other sparsifying transforms in the objective, it is often useful to

include a TV penalty as well [105]. This can be considered as requiring the image to

be sparse by both the specific transform and finite-differences at the same time. In

this case Eq. 4.3 is written as

minimize ||Ψm||1 + αTV (m)

s.t. ||Fum− y||2 < ε,

where α trades Ψ sparsity with finite-differences sparsity.

The `1 norm in the objective is a crucial feature of the whole approach. Minimizing

the `1 norm of an objective often results in a sparse solution. On the other hand,

minimizing the `2 norm, which is defined as ||x||2 = (
∑

i |xi|2)
1/2

and commonly used

for regularization because of its simplicity, does not result in a sparse solution and

hence is not suitable for use as objective function in Eq. 4.3. Intuitively, the `2 norm

penalizes large coefficients heavily, therefore solutions tend to have many smaller

coefficients – hence not be sparse. In the `1 norm, many small coefficients tend to

carry a larger penalty than a few large coefficients, therefore small coefficients are

suppressed and solutions are often sparse.

Special purpose methods for solving Eq. 4.3 have been a focus of research interest

since CS was first introduced. Proposed methods include: interior point methods [15,

54], projections onto convex sets [13], homotopy [23], iterative soft thresholding [19,
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27,99], and iteratively reweighted least squares [20,50]. Next I describe the approach

which is similar to [6, 8, 14], using non-linear conjugate gradients and backtracking

line-search.

It is important to mention that some of the above iterative algorithms for solving

the optimization in Eq. 4.3 in effect perform thresholding and interference cancellation

at each iteration. Therefore there is a close connection between the previous simple

intuitive example of interference cancellation and the more formal approaches that

are described above.

4.5.2 Non-Linear Conjugate-Gradient Solution

Eq. 4.3 poses a constrained convex optimization problem. Consider the unconstrained

problem in so-called Lagrangian form:

argmin
m

||Fum− y||22 + λ||Ψm||1, (4.4)

where λ is a regularization parameter that determines the trade-off between the data

consistency and the sparsity. As is well-known, the parameter λ can be selected

appropriately such that the solution of Eq. 4.4 is exactly as Eq. 4.3. The value of

λ can be determined by solving Eq. 4.4 for different values, and then choosing λ so

that ||Fum− y||2 ≈ ε.

I propose solving Eq. 4.4 using a non-linear conjugate gradient descent algorithm

with backtracking line search where f(m) is the cost-function as defined in Eq. 4.4.

The outline of the algorithm is given in table 4.1.

The conjugate gradient requires the computation of ∇f(m) which is,

∇f(m) = 2F ∗u (Fum− y) + λ∇||Ψm||1. (4.5)

The `1 norm is the sum of absolute values. The absolute value function however,

is not a smooth function and as a result Eq. 4.5 is not well defined for all values

of m. Instead, I approximate the absolute value with a smooth function by using

the relation |x| ≈
√
x∗x+ µ, where µ is a positive smoothing parameter. With this
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INPUTS:

y - k-space measurements

Fu - undersampled Fourier operator associated with the measurements

Ψ - sparsifying transform operator

λ - a data consistency tuning constant

OPTIONAL PARAMETERS:

TolGrad - stopping criteria by gradient magnitude (default 10−4)

MaxIter - stopping criteria by number of iterations (default 100)

α, β - line search parameters (defaults α = 0.05, β = 0.6)

OUTPUTS:

m - the numerical approximation to Eq. 4.4

% Initialization

k = 0; m = 0; g0 = ∇f(m0); ∆m0 = −g0

% Iterations

while (||gk||2 > TolGrad and k < maxIter) {
% Backtracking line-search

t = 1; while (f(mk + t∆mk) > f(mk) + αt ·Real (g∗k∆mk)) { t = βt}
mk+1 = mk + t∆mk

gk+1 = ∇f(mk+1)

γ =
||gk+1||22
||gk||22

∆mk+1 = − gk+1 + γ∆mk

k = k + 1 }

Table 4.1: Outline of the non-linear CG algorithm
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approximation, d|x|
dx
≈ x√

x∗x+µ
.

Now, letW be a diagonal matrix with the diagonal elements wi =
√

(Ψm)∗i (Ψm)i + µ.

Equation 4.5 can be approximated by,

∇f(m) ≈ 2F ∗u (Fum− y) + λΨ∗W−1Ψm. (4.6)

In practice, Eq. 4.6 is used with a smoothing factor µ ∈ [10−15, 10−6]. The number

of CG iterations varies with different objects, problem size , accuracy and undersam-

pling. Examples in this chapter required between 80 and 200 CG iterations.

4.5.3 Low-Order Phase Correction and Phase Constrained

Partial k-Space

In MRI, instrumental sources of phase errors can cause low-order phase variation.

These carry no physical information, but create artificial variation in the image which

makes it more difficult to sparsify, especially by finite differences. By estimating

the phase variation, the reconstruction can be significantly improved. This phase

estimate may be obtained using very low-resolution fully sampled k-space information.

Alternatively, the phase is obtained by solving Eq. 4.3 to estimate the low-order

phase, and repeating the reconstruction while correcting for the phase estimate.

The phase information is incorporated by a slight modification of Eq. 4.3,

minimize ||Ψm||1 (4.7)

s.t. ||FuPm− y||2 < ε

where P is a diagonal matrix whose entries give the estimated phase of each pixel.

Figure 4.10 shows a simulation of a phantom reconstructed with and without a low-

order phase correction. The reconstruction using the phase estimate is significantly

better.

Phase-constrained partial k-space has been used clinically for many years to ac-

celerate the scan time by a factor of up to two [73]. The basic idea exploits the
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conjugate symmetry of the Fourier transform of real-valued images. A phase esti-

mate can be used not only for phase correction, but also to include phase-constrained

partial k-space with CS reconstruction. The conjugate Fourier symmetry is obtained

by constraining the reconstructed image to be real after the phase correction. This is

implemented by a slight modification of Eq. 4.7

minimize ||Ψm||1 (4.8)

s.t. ||FuPm− y||2 < ε

m ∈ R.

4.6 Methods

Unless stated otherwise, most experiments were performed on a 1.5T Signa Excite

scanner. All CS reconstructions were implemented in Matlab (The MathWorks, Inc.,

Natick, MA, USA) using the non-linear conjugate gradient method as described in

Appendix I. Two linear schemes were used for comparison, zero-filling with density

compensation (ZF-w/dc) and low-resolution (LR). ZF-w/dc consists of a reconstruc-

tion by zero-filling the missing k-space data and k-space density compensation. The

k-space density compensation is computed from the probability density function from

which the random samples were drawn. LR consists of reconstruction from a Nyquist

sampled low-resolution acquisition. The low-resolution acquisition contained centric-

ordered data with the same number of data points as the undersampled sets.

4.6.1 Simulation

To test the CS reconstruction performance and reconstruction artifacts with increased

undersampling, I designed a simulation. For the simulation I constructed a phantom

by placing 18 features with 6 different sizes (3 to 75 pixel area) and 3 different

intensities (0.33, 0.66 and 1). The features were distributed randomly in the phantom

to simulate an angiogram. The phantom had 100 × 100 pixels out of which 575 are
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Figure 4.10: Low-order phase correction greatly improves the reconstruction. (a)
Original phantom magnitude and phase images. (b) Reconstruction without linear-
phase correction exhibits residual artifacts. (c) Reconstruction with linear-phase cor-
rection.
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non-zero (5.75%). The finite-differences of the phantom consisted of 425 non-zeros

(4.25%).

The first aim of the simulation was to examine the performance of the CS recon-

struction and its associated artifacts with increased undersampling compared to the

LR and ZF-w/dc methods. The second aim was to demonstrate the advantage of

variable density random undersampling over uniform density random undersampling.

From the full k-space I constructed sets of randomly undersampled data with

uniform density as well as variable density (density power of 12) with corresponding

accelerations factors of 8, 12 and 20 (1250, 834 and 500 k-space samples). Since the

phantom is sparse both in image space and by finite differences, the data were CS

reconstructed by using an `1 penalty on the image as well as a TV penalty (finite

differences as the sparsifying transform) in Eq. 4.3. The result was compared to the

ZF-w/dc and LR linear reconstructions.

4.6.2 Undersampled 2D Cartesian Sampling in the Presence

of Noise

CS reconstruction is known to be stable in the presence of noise [12,41], and can also

be used to further perform non-linear edge preserving denoising [22,87] of the image.

To document the performance of CS in the presence of noise, I scanned a phantom

using a 2D Cartesian spin-echo sequence with scan parameters yielding measured

SNR = 6.17. The k-space was undersampled by a factor of 2.5 by randomly choosing

phase-encodes lines with a quadratic variable density. A CS reconstruction using a

TV penalty in Eq. 4.3 was obtained, with two different consistency RMS errors of

ε = 10−5 and ε = 0.1. The result was compared to the ZF-w/dc reconstruction, and

the reconstruction based on complete Nyquist sampling. Finally, the image quality

as well as the resulting SNR of the reconstructions were compared.

4.6.3 Multi-slice 2DFT Fast Spin-Echo Brain Imaging

In the theory section it was shown that brain images exhibit transform sparsity in

the wavelet domain. Brain scans are a significant portion of MRI scans in the clinic,
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and most of these are multi-slice acquisitions. CS has the potential to reduce the

acquisition time, or improve the resolution of current imagery.

In this experiment I acquired a T2-weighted multi-slice k-space data of a brain of a

healthy volunteer using a FSE sequence (256×192×32, res = 0.82mm, slice = 3mm,

echo− train = 15, TR/TE = 4200/85ms). For each slice I acquired different sets of

80 phase-encodes chosen randomly with quadratic variable density from 192 possible

phase encodes, for an acceleration factor of 2.4. The image was CS reconstructed by

using a wavelet transform (Daubechies 4) as sparsifying transform together with a TV

penalty in Eq. 4.3. To reduce computation time and memory load, I separated the

3D problem into many 2D CS reconstructions, i.e., iterating between solving for the

y−z plane slices, and solving for the x−y plane slices. To demonstrate the reduction

in scan time, as well as improved resolution, the multi-slice reconstruction was then

compared to the ZF-w/dc and LR linear reconstructions and to the reconstruction

based on complete Nyquist sampling.

The TPSF analysis shows that the multi-slice approach has considerable advantage

over the 2DFT in recovering coarse scale image components. To demonstrate this,

the multi-slice CS reconstruction was compared to a reconstruction from data in

which each slice was undersampled in the same way. To further enhance the effect, I

repeated the reconstructions for data that was randomly undersampled with uniform

density where the coarse scale image components are severely undersampled.

4.6.4 Contrast-Enhanced 3D Angiography

Angiography is a very promising application for CS. First, the problem matches the

assumptions of CS. Angiograms appear to be sparse already to the naked eye. The

blood vessels are bright with a very low background signal. Angiograms are sparsified

very well by both the wavelet transform and by finite-differences. This is illustrated

in Fig. 4.3 ; blood vessel information is preserved in reconstructions using only 5%

of the transform coefficients. Second, the benefits of CS are of real interest in this

application. In angiography there is often a need to cover a very large FOV with

relatively high resolution, and the scan time is often crucial.
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To test the behavior of CS for various degrees of undersampling in a controlled way,

I simulated k-space data by computing the Fourier transform of a magnitude post-

contrast 3DFT angiogram of the peripheral legs. The scan was RF-spoiled gradient

echo (SPGR) sequence with the following parameters: TR = 6 ms, TE = 1.5 ms,

Flip = 30◦. The acquisition matrix was set to 480 × 480 × 92 with corresponding

resolution of 1× 0.8× 1 mm. The imaging plane was coronal with a superior-inferior

readout direction.

From the full k-space set, five undersampled data sets with corresponding accel-

eration factors of 5, 6.7, 8, 10, 20 were constructed by randomly choosing phase

encode lines with the quadratic variable k-space density. To reduce complexity, prior

to reconstruction, a 1D Fourier transform was applied in the fully sampled readout

direction. This effectively creates 480 separable purely random undersampled 2D re-

constructions. Finally, the images were CS reconstructed by using a TV penalty in

Eq. 4.3. The result was compared to the ZF-w/dc and LR linear reconstructions.

I further tested the method, now with true k-space data on a first-pass abdom-

inal contrast enhanced angiogram with the following scan parameters: TR/TE =

3.7/0.96 ms, FOV = 44 cm, matrix = 320 × 192 × 32 (with 0.625 fractional echo),

BW = 125 kHz.

The fully sampled data were undersampled 5-fold in retrospect with a quadratic

k-space density effectively reducing the scan time from 22 s to 4.4 s. The images

were CS reconstructed from the undersampled data using a TV penalty in Eq. 4.3

and the result was again compared to the ZF-w/dc and LR linear reconstructions. To

compensate for the fractional echo, a Homodyne partial-Fourier reconstruction [73]

was performed in the readout direction.

4.6.5 Variable Density Spirals Whole Heart Coronary Imag-

ing

X-ray coronary angiography is the gold standard for evaluating coronary artery dis-

ease, but it is invasive. Multi-slice x-ray CT is a non-invasive alternative, but gener-

ates high doses of ionizing radiation. MRI is emerging as a non-invasive, non-ionizing
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alternative [25,74,88,101,109].

Coronary arteries are constantly subject to heart and respiratory motion; high-

resolution imaging is therefore a challenging task. Heart motion can be handled by

synchronizing acquisitions to the cardiac cycle (cardiac gating). Respiratory motion

can be mitigated by long scans with navigated breathing compensation [109], or sim-

ply by short breath-held acquisitions [25,74]. However, breath-held cardiac-triggered

collection schemes face strict timing constraints and very short imaging windows. The

number of acquisitions is limited to the number of cardiac cycles in the breath-hold

period. The number of heart-beats per period is itself limited – patients in need of

coronary diagnosis cannot be expected to hold their breath for long! Also, each acqui-

sition must be very short to avoid motion blurring. On top of this, many slices need

to be collected to cover the whole volume of the heart. Because of these constraints,

traditionally breath-held cardiac triggered acquisitions have limited spatial resolution

and only partial coverage of the heart [25, 109]. Compressed sensing can accelerate

data acquisition, allowing the entire heart to be imaged in a single breath-hold [89].

Figure 4.16 shows a diagram of the multi-slice acquisition. To meet the strict

timing requirements, the hardware efficient spiral k-space trajectory is used. For each

cardiac trigger, a single spiral in k-space is acquired for each slice. The heart does

move considerably during the imaging period, but because each acquisition is very

short, each slice is relatively immune to motion and inter-slice motion is manifested

as geometric distortion across the slices rather than blurring. Geometric distortion

has little effect on the clinical diagnostic value of the image. Even though spirals

are very efficient, the strict timing limitations make it necessary to undersample k-

space twofold. To do so, undersampled variable density spirals [104] are used. Such

spirals have an incoherent PSF (see Fig. 4.8e). When used with linear gridding

reconstruction [48] undersampling artifacts are incoherent and appear simply as added

noise. Coronary images are generally piece-wise smooth and are sparsified well by

finite-differences. CS reconstruction can suppress undersampling-induced interference

without degrading the image quality.
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4.6.6 k-t Sparse: Application to Dynamic Heart Imaging

Dynamic imaging of time-varying objects is challenging because of the spatial and

temporal sampling requirements of the Nyquist criterion. Often temporal resolution is

traded off against spatial resolution (or vice versa). Artifacts appear in the traditional

linear reconstruction when the Nyquist criterion is violated.

Now consider a special case: dynamic imaging of time-varying objects undergoing

quasi-periodic changes. Special cases include heart imaging, which I focus on here.

Heart motion is quasi-periodic: the time series of intensity in a single voxel is sparse in

the temporal frequency domain (See Fig. 4.3). At the same time, a single frame of the

heart ‘movie’ is sparse in the wavelet domain. A simple transform can exploit both

effects: apply a spatial wavelet transform followed by a temporal Fourier transform

(see Fig. 4.9 bottom-left panel).

Can the natural sparsity of dynamic sequences be exploited to reconstruct a time-

varying object sampled at significantly sub-Nyquist rates? Consider the Cartesian

sampling scheme that acquires for each time slice a single line in k-space, following an

orderly progression through the space of lines as time progresses (see Fig. 4.9 top-right

panel). For the desired FOV and resolution it is impossible, using this scheme, to meet

the spatial-temporal Nyquist rate. In fact, this scheme is particularly inefficient for

dynamic imaging with traditional acquisitions and reconstruction methods. Instead,

one change is made: make the k-space line ordering random instead of orderly [67,81].

The random ordering comes much closer to randomly sampling k − t space (See Fig.

4.9 bottom-right panel) and the sampling operator becomes much less coherent with

the sparsifying transform.

4.7 Results

4.7.1 Simulation

Figure 4.11 presents the simulation results. The LR reconstruction, as expected,

shows a decrease in resolution with acceleration characterized by loss of small struc-

tures and diffused boundaries. The ZF-w/dc reconstructions exhibit a decrease in
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apparent SNR due to the incoherent interference, which completely obscures small

and dim features. The uniform density undersampling interference is significantly

larger and more structured than the variable density. In both ZF-w/dc reconstruc-

tions the features that are brighter than the interference appear to have well-defined

boundaries. In the CS reconstructions, at 8-fold acceleration (approximately 3 times

more Fourier samples than sparse coefficients) I get exact recovery from both uniform

density and variable density undersampling! At 12-fold acceleration (approximately

2 times more Fourier samples than sparse coefficients) I still get exact recovery from

the variable density undersampling, but lose some of the low-contrast features in the

uniform density undersampling. At 20-fold acceleration (similar number of Fourier

samples as sparse coefficients) I get loss of image features in both reconstructions. The

reconstruction errors are severe from the uniform density undersampling. However,

in reconstruction from the variable density undersampling, only the weak intensity

objects have reconstruction errors; the bright, high contrast features are well recon-

structed.

4.7.2 2DFT CS Reconstruction in the Presence of Noise

Figure 4.12 presents the reconstruction results. Figure 4.12a shows the reconstruction

of a fully sampled phantom scan. The measured SNR is 6.17. The ZF-w/dc recon-

struction result in Fig. 4.12b exhibits significant apparent noise in the image with

measured SNR of 3.79. The apparent noise is mostly incoherent aliasing artifacts

due to the undersampling as well as noise increase from the density compensation

(which is essential to preserve the resolution). Some coherent aliasing artifacts are

also visible (arrows). In Fig. 4.12c the artifacts are suppressed by the CS reconstruc-

tion, recovering the noisy image with an SNR of 9.84. The SNR is slightly better

because the CS reconstruction is inherently a denoising procedure. By increasing the

RMS consistency parameter to ε = 0.1 (less consistency) the CS reconstruction recov-

ers and denoises the phantom image. Measured SNR increases dramatically to 26.9

without damaging the image quality. The denoising is non-linear edge-preserving TV

denoising and is shown in Fig. 4.12d.
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Figure 4.11: Simulation: Reconstruction artifacts as a function of acceleration. The
LR reconstructions exhibit diffused boundaries and loss of small features. The ZF-
w/dc reconstructions exhibit an significant increase of apparent noise due to incoher-
ent aliasing, the apparent noise appears more “white” with variable density sampling.
The CS reconstructions exhibit perfect reconstruction at 8 and 12 fold (only var.
dens.) accelerations. With increased acceleration there is loss of low-contrast fea-
tures and not the usual loss of resolution. The reconstructions from variable density
random undersampling significantly outperforms the reconstructions from uniform
density random undersampling.
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Figure 4.12: 2DFT CS reconstruction from noisy data. CS reconstruction can perform
denoising of the image as well as interference removal by relaxing the data consistency
(a) Reconstruction from complete noisy data. (b) ZF-w/dc: The image suffers from
apparent noise due to incoherent aliasing as well as noise. (c) CS reconstruction with
TV penalty from noisy undersampled data. Consistency RMS error set to 10−5. (d)
CS reconstruction with TV penalty from noisy undersampled data. Consistency RMS
error set to 0.1. Note interference removal in both (c) and (d) and the denoising in
(d).
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4.7.3 Multi-slice Fast Spin-Echo Brain Imaging

Figure 4.13 shows the experimental results. In Fig. 4.13a coronal and axial slices of

the multi-slice CS reconstruction are compared to the full Nyquist sampling, ZF-w/dc

and LR reconstructions. CS exhibits significant resolution improvement over LR and

significant suppression of the aliasing artifacts over ZF-w/dc compared to the full

Nyquist sampling.

Figure 4.13b shows CS reconstructions from several undersampling schemes. The

corresponding undersampling schemes are given in Fig. 4.13c. Low-resolution alias-

ing artifacts are observed in the reconstructions in which the data was undersampled

the same way for all slices. The artifacts are more pronounced for uniform under-

sampling. The reason is that some of the coarse-scale wavelet components in these

reconstructions were not recovered correctly because of the large peak interference

of coarse-scale components that was documented in the TPSF theoretical analysis

(see Fig. 4.6a). These artifacts are significantly reduced when each slice is under-

sampled differently. This is because the theoretical TPSF peak interference in such

sampling scheme is significantly smaller (see Fig. 4.6b), which enables better recovery

of these components. The results in Fig. 4.13b show again that a variable density

undersampling scheme performs significantly better than uniform undersampling.

4.7.4 Contrast Enhanced 3D Angiography

Figure 4.14 shows a region of interest in the maximum intensity projection (MIP) of

the reconstruction results as well as a slice reconstruction from 10-fold acceleration.

The LR reconstruction (left column), as expected, shows a decrease in resolution

with acceleration characterized by loss of small structures and diffused blood vessel

boundaries. The ZF-w/dc reconstruction (middle column), exhibits a decrease in

apparent SNR due to the incoherent interference, which obscures small and dim

vessels. Interestingly, the boundaries of the very bright vessels remain sharp and are

diagnostically more useful than the LR. The CS reconstruction (right column), on

the other hand, exhibits good reconstruction of the blood vessels even at very high

accelerations. The resolution as well as the contrast are preserved with almost no
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Figure 4.13: Multi-slice 2DFT fast spin echo CS at 2.4 acceleration. (a) The CS-
wavelet reconstruction exhibits significant resolution improvement over LR and signif-
icant suppression of the aliasing artifacts over ZF-w/dc compared to the full Nyquist
sampling. (b) CS wavelet reconstructions from several undersampling schemes. The
multi-slice approach outperforms the single-slice approach and variable density un-
dersampling outperforms uniform undersampling. (c) The associated undersampling
schemes; variable density (top) and uniform density (bottom), single-slice (left) and
multi-slice (right).
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loss of information at up to 10-fold acceleration. Even at acceleration of 20-fold the

bright blood vessel information is well preserved. These results conform with the

thresholding experiment in Fig. 4.3 as well as the simulation results in Fig 4.11.

Figure 4.15 shows the reconstruction result from the first-pass contrast experi-

ment. The imaged patient has an aorto-bifemoral bypass graft. This carries blood

from the aorta to the lower extremities, and is seen on the left side of the aorta (right

in the image). There is a high-grade stenosis in the native right common illiac artery,

which is indicated by the arrows. Again, at 5-fold acceleration the LR acquisition

exhibits diffused boundaries and the ZF-w/dc exhibits considerable decrease in appar-

ent SNR. The CS reconstruction exhibits a good reconstruction of the blood vessels.

In particular, in Fig. 4.15d flow across the stenosis is visible, but it is not visible in

Figs. 4.15b-c.

4.7.5 Variable Density Spirals, Whole Heart Coronary Imag-

ing

Figure 4.16 shows a comparison of the linear direct gridding reconstruction and CS,

on the right coronary artery reformatted from a single breath-hold whole-heart ac-

quisition. The linear gridding reconstruction suffers from apparent noise artifacts

actually caused by undersampling. Indeed, the CS reconstruction suppresses those

artifacts, without impairing the image quality.

4.7.6 k-t Sparse: Application to Dynamic Heart Imaging

Fig. 4.17 shows results from two experiments. The first result used synthetic data:

a motion phantom, periodically changing in a cartoon of heart motion. The figure

depicts an image sequence reconstructed from a sampling rate 4 times slower than

the Nyquist rate, using randomly-ordered acquisition and nonlinear reconstruction.

The second result involved dynamic real-time acquisition of heart motion. The given

FOV (16cm), resolution (2.5mm) and repetition time (4.4ms) allows a Nyquist rate

of 3.6 frames per second (FPS). This leads to temporal blurring and artifacts in

the traditionally-reconstructed image. By instead using random ordering and CS
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Figure 4.14: Contrast-enhanced 3D angiography reconstruction results as a function
of acceleration. Left Column: Acceleration by LR. Note the diffused boundaries
with acceleration. Middle Column: ZF-w/dc reconstruction. Note the increase of
apparent noise with acceleration. Right Column: CS reconstruction with TV penalty
from randomly undersampled k-space.
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Figure 4.15: Reconstruction from 5-fold accelerated acquisition of first-pass contrast
enhanced abdominal angiography. (a) Reconstruction from a complete data set. (b)
LR (c) ZF-w/dc (d) CS reconstruction from random undersampling. The patient
has a aorto-bifemoral bypass graft. This carries blood from the aorta to the lower
extremities. There is a high-grade stenosis in the native right common illiac artery,
which is indicated by the arrows. In figure parts (a) and (d) flow across the stenosis
is visible, but it is not on (b) and (c).
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Figure 4.16: Single breath-hold whole-heart coronary artery imaging. Left panel: the
imaging sequence timing diagram. Right panel: A slice through the volume of the
heart showing the right coronary artery (3). The incoherent artifacts of undersampled
variable-density spirals (white arrow) appear as noiselike interference in the linear
gridding reconstruction (left). These artifacts are suppressed in the CS reconstruction
(right) without compromising image quality. The slice shows: (1) Aorta (2) Chest
wall (3) Right coronary artery (4) Right ventricle (5) Left ventricle (6) Liver.
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reconstruction it was possible to recover the dynamic sequence at the much higher

rate of 25FPS with significantly reduced image artifacts.

4.8 Discussion

4.8.1 Computational Complexity

Development of fast algorithms for solving Eq. 4.3 accurately or approximately is an

increasingly popular research topic. Many of these methods have been mentioned in

the theory section. Overall, the reconstruction is iterative and more computationally

intensive than linear reconstruction methods. However, some of the methods proposed

show great potential to significantly reduce the overall complexity.

The examples in this chapter were reconstructed using a non-linear conjugate

gradient method with backtracking line-search. In a Matlab (The MathWorks, Inc.,

Natick, MA, USA) implementation, it takes about 150 CG iterations (approximately

30 seconds) to reconstruct a 480×92 angiogram using a TV-penalty at 5-fold accelera-

tion. I expect a significant reduction in the reconstruction time by code optimization.

4.8.2 Reconstruction Artifacts

The `1 reconstruction tends to slightly shrink the magnitude of the reconstructed

sparse coefficients. The resulting reconstructed coefficients are often slightly smaller

than in the original signal. This coefficient shrinkage decreases when the reconstruc-

tion consistency parameter ε in Eq. 4.3 is small.

In some wavelet-based CS reconstructions, small high-frequency oscillatory arti-

facts may appear in the reconstruction. This is due to false detection of fine-scale

wavelet components. To mitigate these artifacts it is recommended to add a small

TV penalty on top of the wavelet penalty. This can be considered as requiring the

image to be sparse in both wavelet and finite-differences transforms.

In CS, the contrast in the image plays a major part in the ability to vastly under-

sample and reconstruct images. High contrast often results in large distinct sparse

coefficients. These can be recovered even at very high accelerations. For example, a
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Figure 4.17: Dynamic imaging of quasi-periodic change. Top: Phantom experiment
showing a reconstruction from 4-fold undersampling. Bottom: Dynamic acquisition
of the heart motion showing a reconstruction from 7-fold undersampling.
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single bright pixel will most likely appear in the reconstruction even with vast un-

dersampling (See Figs. 4.11 and 4.14 for an example). However, features with lower

contrast at the same accelerations will be so deeply submerged by the interference

that they would not be recoverable. As such, with increased acceleration the most

distinct artifacts in CS are not the usual loss of resolution or increase in aliasing inter-

ference, but loss of low-contrast features in the image. Therefore, CS is particularly

attractive in applications that exhibit high resolution high contrast image features,

and rapid imaging is required.

4.8.3 Relation to Other Acceleration Methods

Vastly undersampled 3D radial trajectories – VIPR [1] have demonstrated high ac-

celeration for angiography. The VIPR trajectory is a 3D incoherent sampling scheme

in which the interference spreads in all 3 dimensions. As such, reconstruction from

VIPR acquisitions can be further improved by using the CS approach.

Wajer’s PhD thesis [108] suggested undersampling k-space and employing a Bayesian

reconstruction to randomized trajectories. This approach, although different, is re-

lated to finite difference sparsity.

Non uniform sampling with maximum entropy reconstruction has been used suc-

cessfully to accelerate multi-dimensional NMR acquisitions [86]. Maximum entropy

reconstruction is also related to sparsity of finite differences.

CS reconstruction exploits sparsity and compressibility of MR images. It can be

combined with other acceleration methods that exploit different redundancies. For

example, constraining the image to be real in Eq. 4.7 effectively combines phase

constrained partial k-space with the CS reconstruction. In a similar way, CS can be

combined with SENSE reconstruction by including the coil sensitivity information in

Eq. 4.3. In general, any other prior on the image that can be expressed as a convex

constraint can be incorporated in the reconstruction.
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4.9 Conclusions

I have presented the theory of CS and the details of its implementation for rapid MR

imaging. I demonstrated experimental verification of several implementations for 2D,

2D multi-slice, 3D and dynamic imaging. I showed that the sparsity of MR images can

be exploited to significantly reduce scan time, or alternatively, improve the resolution

of MR imagery. I demonstrated high acceleration in in-vivo experiments. CS can

play a major part in many applications that are limited by the scan time, when the

images exhibit transform sparsity.
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Chapter 5

SPIR-iT

5.1 Introduction

Multiple receiver coils have been used since the beginning of MRI, mostly for the

benefit of increased signal to noise ratio (SNR). In the late 80’s, Kelton, Magin and

Wright proposed in an abstract [51] to use multiple receivers for scan acceleration.

However, it was not until the late 90’s when Sodickson et al. presented their method

SMASH [97] and later Pruessmann et al. presented SENSE [84], that accelerated

scans using multiple receivers became a practical and viable option.

Multiple receiver scans can be accelerated because the data obtained for each coil

are acquired in parallel and each coil image is weighted differently by the spatial sen-

sitivity of its coil. This sensitivity information in conjunction with gradient encoding

reduces the required number of data samples that is needed for reconstruction. This

concept of reduced data acquisition by combined sensitivity and gradient encoding is

called parallel imaging.

Over the years, a variety of methods for parallel imaging reconstruction have

been developed. These methods differ by the way the sensitivity information is used.

Methods like SMASH [97], SENSE [84], SPACE-RIP [59], PARS [112] and kSPA [63]

explicitly require the coil sensitivities to be known. In practice, it is very difficult

to measure the coil sensitivities with high accuracy. Errors in the sensitivity are

often amplified and even small errors can result in visible artifacts in the image.

83
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On the other hand, autocalibrating methods like AUTO-SMASH [44, 49], PILS [33],

GRAPPA [35] and APPEAR [2] implicitly use the sensitivity information for re-

construction and avoid some of the difficulties associated with explicit estimated of

the sensitivities. Another major difference is in the reconstruction target. SMASH,

SENSE, SPACE-RIP, kSPA and AUTO-SMASH attempt to directly reconstruct a

single combined image. Coil-by-coil methods, PILS, PARS and GRAPPA directly

reconstruct the individual coil images leaving the choice of combination to the user.

In practice, coil-by-coil methods tend to be more robust to inaccuracies in the sensi-

tivity estimation and often exhibit fewer visible artifacts [2,34]. Table 5.1 summarizes

some of the existing methods and their properties.

SENSE is an explicit sensitivity, single image reconstruction method. Among

all methods, the SENSE approach is the most general. It provides a framework for

arbitrary k-space sampling and to easily incorporate additional image priors. When

the sensitivities are known, SENSE is the optimal solution [2,34]. To the best of the

author’s knowledge, none of the coil-by-coil autocalibrating methods are as flexible

and optimal as SENSE. Some proposals [42,45,46,93] adapt GRAPPA to reconstruct

some non-Cartesian trajectories , but these are approximations and lose some of the

ability to remove all the aliasing artifacts. The APPEAR [2] method can provide a

more accurate reconstruction, but is not flexible in incorporating additional priors

and regularizations.

Following SENSE, while using a coil-by-coil autocalibrating approach similar to

GRAPPA, I propose here a general and optimal autocalibrating coil-by-coil recon-

struction method called SPIR-iT. It is based on self-consistency with the calibration

and acquisition data. The SPIR-iT method is flexible and can reconstruct data from

arbitrary k-space sampling patterns and easily incorporates additional image priors.

SPIR-iT stands for iTerative Self-consistent Parallel Imaging Reconstruction.

In this chapter I first review the foundations upon which SPIR-iT is built, the

SENSE and GRAPPA methods. I then define the SPIR-iT consistency constraints

and show that the reconstruction is a solution to an optimization problem. I then

extend the method to arbitrary sampling patterns with k-space-based and image-

based approaches. Finally I show that the method can easily introduce additional
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method sensitivity image comments

SMASH explicit single restricted sensitivities
SENSE explicit single optimal, iterative non-Cartesian,

inverse-problem
AUTO-SMASH implicit single Cartesian, direct
SPACE-RIP explicit single direct 1D non-Cartesian
PILS implicit coil-by-coil localized coil sensitivities
GRAPPA implicit coil-by-coil Cartesian w/ approximate direct

non-Cartesian variants
PARS explicit coil-by-coil direct non-Cartesian
APPEAR implicit coil-by-coil direct non-Cartesian
kSPA explicit single direct non-Cartesian, approxi-

mate
SPIRiT implicit coil-by-coil optimal, iterative non-Cartesian,

inverse problem

Table 5.1: Properties of some parallel imaging reconstruction methods.

priors such as off-resonance correction and regularization.

5.2 SENSE

SENSE poses parallel imaging reconstruction as an inverse problem in image space.

Provided that the coil sensitivities are known or can be measured with sufficient

accuracy, the problem can be formulated as a set of linear equations. Let m be the

underlying magnetization image. Let si be the sensitivity of the ith coil and let D be

a partial Fourier operator corresponding to the k-space undersampling scheme. The

received signal for the ith coil can be written as,

yi = Dsim. (5.1)

It is often more convenient to write the entire set of equations in matrix form as

y = Em, (5.2)
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where the matrix E is an encoding matrix that incorporates the coil sensitivities and

the partial Fourier operators. The system in Eq. 5.2 is often solved by least-squares

either directly [84] or iteratively [85].

The advantage of the SENSE approach is that it is very general. It can be used

with arbitrary sampling trajectories, and other priors on the image can be easily

incorporated. It is the optimal solution when the coil sensitivities are exact. However,

it is often very difficult to accurately and robustly measure the sensitivities, and even

small errors can lead to visible artifacts in the image.

5.3 Cartesian GRAPPA

The GRAPPA reconstruction poses the parallel imaging reconstruction as a synthe-

sis problem in k-space. It is a self-calibrating coil-by-coil reconstruction. Unlike

SENSE, which attempts to reconstruct a single combined image, GRAPPA attempts

to reconstruct the individual coil images directly.

In the traditional GRAPPA [35] algorithm a non-acquired k-space value in the ith

coil, at position r, xi(r), is synthesized by a linear combination of acquired neighboring

k-space data from all coils. Let ξir be a vector of all points on a Cartesian grid in the

neighborhood of xi(r) in the ithcoil, and let ξpir be a subset of ξir, choosing only those

points that are acquired. The recovery of xi(r) is given by:

xi(r) =
∑
j

〈gpji, ξ
p
jr〉, (5.3)

where gpji is the vector set of weights obtained by calibration. The full k-space grid is

reconstructed by solving Eq. 5.3 for each missing point in all coils and all positions.

The linear combination weights, or calibration kernel, used in Eq. 5.3 are obtained

by calibration from a fully acquired k-space region. The calibration finds the set of

weights that is the most consistent with the calibration data in the least-squares sense.

In other words, the calibration stage looks for a set of weights such that if one tries

to synthesize each of the calibration points from their neighborhood the result should

be as close as possible to the true calibration points. More formally, the calibration
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is described by the following equation:

argmin
g

p
ji

∑
r∈Calib

∣∣∣∣∣
∣∣∣∣∣∑
j

〈gpji, ξ
p
jr〉 − xi(r)

∣∣∣∣∣
∣∣∣∣∣
2

. (5.4)

The assumption is that if the calibration consistency holds within the calibration

area, it also holds in other parts of k-space. Therefore Eq. 5.3 can be used for the

reconstruction. In the original GRAPPA paper, the undersampling pattern was such

that the k-space sampling in the neighborhood of the missing points is the same for

all points. Therefore a single set of weights is enough for reconstruction and the

calibration can be performed only once. In 2D acceleration however, the sampling

pattern around each missing point can be quite different. Different sets of weights

must be obtained for each sampling pattern. As an illustration, consider the 2D

GRAPPA reconstruction in Fig. 5.1. The figure portrays two equations to solve two

missing data points. Each of the equations uses a different set of calibration weights.

The neighborhood size is a square of three k-space pixels.

5.4 SPIR-iT: Self Consistency Formulation

Inspired by the generality of SENSE and the autocalibrating coil-by-coil GRAPPA

method, I take a slightly different approach to GRAPPA. My aim is to describe the

reconstruction as an inverse problem governed by data consistency constraints. The

key in the approach is to separate the consistency constraints into 1) consistency

with the calibration, and 2) consistency with the data acquisition. I formulate these

constraints as sets of linear equations. The desired reconstruction is the solution that

satisfies the sets of equations best according to a suitable error measure criteria.

Even though the acquired k-space data may, or may not be Cartesian, ultimately,

the desired reconstruction is a complete Cartesian k-space grid for each of the coils.

Therefore, I define the entire Cartesian k-space grid for all the coils as the unknown

variables in the equations. This step makes the formulation very general especially

when considering noisy data, regularization and non-Cartesian sampling.
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Figure 5.1: Traditional 2D GRAPPA: Missing k-space data are synthesized from
neighboring acquired data. The synthesizing kernel depends on the specific sampling
pattern in the neighborhood of the missing point. The reconstruction of a point is
independent of the reconstruction of other missing points.
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5.4.1 Consistency with the Calibration

Traditional GRAPPA enforces calibration consistency only between synthesized points

and the acquired points in their associated neighborhoods. The proposed approach

expands the notion of consistency by enforcing consistency between every point on

the grid, xi(r), and its entire neighborhood across all coils, ξjr. It is important to

emphasize that the “entire neighborhood” includes all the k-space points near xi(r) in

all coils whether they were acquired or not. The consistency equation for any k-space

data point is given by,

xi(r) =
∑
j

〈gji, ξjr〉. (5.5)

The vector gji the vector set of weights obtained by calibration, similar to Eq. 5.3.

The difference from the traditional GRAPPA weights, gpji, is that gji is a full kernel

independent of the actual k-space sampling pattern. Equation 5.3 defines a large set

of decoupled linear equations that can be solved separately. On the other hand, Eq.

5.5 defines a large set of coupled linear equations. As an illustration, consider Fig. 5.2

which has a similar sampling setup as the 2D GRAPPA problem in Fig. 5.1. In the

figure, three equations are portrayed. It shows that the synthesis of a missing central

point depends on both acquired and missing points in its neighborhood and that the

equations are coupled.

In the same way as before, it is convenient to write the entire coupled system of

equations in matrix form. Let x be the entire k-space grid for all coils, and let G be

a matrix containing the gji’s in the appropriate locations. The system of equations

can simply be written as,

x = Gx. (5.6)

The matrix G is in fact a series of convolution operators that convolve the entire

k-space with the appropriate calibration kernels,

xi =
∑
j

gij ∗ xj. (5.7)

Equations 5.6 and 5.7 can be explained intuitively. Applying the operation G on
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x is the same as attempting to synthesize every point from its neighborhood. If x is

indeed the right solution then synthesizing every point from its neighborhood should

yield the exact same k-space data!

5.4.2 Consistency with the Data Acquisition

Of course, any plausible reconstruction has to be consistent with the real data that

were acquired by the scanner. This constraint can also be expressed as a set of

linear equations in matrix form. Let y be the vector of acquired data from all coils

(concatenated). Let the operator D be a linear operator that relates the reconstructed

Cartesian k-space, x, to the acquired data. The data acquisition consistency is given

by

y = Dx. (5.8)

This formulation is very general in the sense that x is always Cartesian k-space data,

whereas y can data acquired with arbitrary k-space sampling patterns. In Cartesian

acquisitions, the operator D selects only acquired k-space locations. The selection can

be arbitrary, such as uniform, variable density or pseudo random patterns. In non-

Cartesian sampling, the operatorD represents an interpolation matrix. It interpolates

data from a Cartesian k-space grid onto non-Cartesian k-space locations in which the

data were acquired.

5.4.3 Constrained Optimization Formulation

Equations 5.6 and 5.8 describe the calibration and data acquisition consistency con-

straints as sets of linear equations that the reconstruction must satisfy. However,

due to noise and calibration errors these equations can only be solved approximately.

Therefore I propose as reconstruction the solution to an optimization problem given

by,

minimize ||(G− I)x||2

s.t. ||Dx− y||2 ≤ ε.
(5.9)
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Figure 5.2: Consistency constrained Cartesian reconstruction: Three consistency
equations are illustrated. The reconstruction of each point on the grid is depen-
dent on its entire neighborhood. The reconstruction of missing points depends on the
reconstruction of other missing points. The consistency equation is independent of
the sampling pattern.
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The parameter ε is introduced as a way to control the consistency. It trades off data

acquisition consistency with calibration consistency. The beauty in this formulation is

that the calibration consistency is always applied to a Cartesian k-space, even though

the acquired data may be non-Cartesian. The treatment of non-Cartesian sampling

appears only in the data acquisition constraint.

A useful reformulation of Eq. 5.9 is the unconstrained Lagrangian form,

argmin
x
||Dx− y||2 + λ(ε)||(G− I)x||2. (5.10)

As is well known, the parameter λ can be chosen appropriately such that the solution

of Eq. 5.10 is exactly as Eq. 5.9. It is worth pointing out that in most cases both

the G and D operation and their adjoints can be calculated very quickly. In general

the optimization in Eq. 5.9 and variations of it can often be solved very efficiently

by iterative methods such as the conjugate gradient algorithm and projection over

convex sets (POCS) iterations. In the next sections I will provide the reconstruction

details for more specific examples, including the calculation of the G and D operators

and their adjoints.

5.5 Arbitrary Cartesian Sampling

In some cases it may be useful to enforce a data acquisition equality constraint (i.e.,

ε = 0 in Eq. 5.9). One way to implement this is to iteratively reduce λ, and repeatedly

solving Eq. 5.10. A more simple and efficient approach is to incorporate the equality

constraint in the objective, such that the problem is formulated as simple least-

squares. Let y be the vector of acquired points, let xnacq be a vector representing

only the missing points, and let Gacq and Gnacq be the part of the operator G that

operates on the acquired and non-acquired points respectively. Rewrite Eq. 5.9 as

arg min
xnacq

||(Gnacq − I)xnacq + (Gacq − I)y||2 , (5.11)
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POCS SPIR-iT CARTESIAN RECONSTRUCTION
INPUTS:

y - k - space measurements from all coils
nacq - indeces of acquired k-space
G - operator matrix obtained by calibration
errToll - stopping tolerance

OUTPUTS:
xk - reconstructed k-space for all coils

ALGORITHM:
xk = 0;xk−1 = 0;
do {

xk = Gxk−1 % Calibration consistency projection
xk[nacq] = y % Data acquisition consistency projection
e = ||xk − xk−1|| % Error stopping criteria
xk−1 = xk

}while e > errToll

Table 5.2: A POCS algorithm for SPIR-iT from arbitrary sampling on a Cartesian
grid.

which has the usual format of a least-squares problem (i.e., argminx ||Ax− b||) and

can be solved directly using sparse matrices or more preferably iteratively using stan-

dard conjugate gradient algorithms. A simpler alternative is to implement the recon-

struction as a POCS algorithm. The POCS approach is described in table 5.2 and

involves repeated application of the G operator.

5.6 Non-Cartesian Sampling

In theory, Eq. 5.9 is the solution for the non-Cartesian case. However, the practical

success of the reconstruction depends on how well the operators G and D approximate

the true data, and how fast they can be computed in practice. The main difficulty

facing the reconstruction is an accurate and efficient interpolation scheme in k-space.

Next, I present two approaches. The first operates entirely in k-space. The other

also applies calculations in the image domain. The former is fast but approximate,

whereas the latter is of higher accuracy but with increased computation.
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Figure 5.3: Non-Cartesian consistency reconstruction. A calibration consistency
equation describing the relation between neighboring points on a Cartesian grid is
shown in red. An acquisition data consistency relation between the Cartesian miss-
ing points and the non-Cartesian acquired points is shown in blue. These define a
large set of linear equations that is sufficient for reconstruction.
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5.6.1 Calibration

The SPIR-iT approach is autocalibrating. I assume that there is always a subset of

k-space that is sufficiently sampled for the purpose of calibration. For example, radial

trajectories and dual density spiral [42] trajectories have a region around the k-space

origin that is sufficiently sampled. From such data, Cartesian calibration data are

obtained by interpolation. Alternatively, such a Cartesian calibration region can be

obtained by a separate scan. The full kernel weights are calculated from calibration

data similar to Eq. 5.4.

5.6.2 k-Space Domain Reconstruction

The most natural way to approximate the data consistency constraint y = Dx is

to use convolution interpolation to interpolate from Cartesian k-space onto the non-

Cartesian grid and vice versa. This is very similar to the gridding algorithm. However,

several details need to be taken into consideration.

Consider a convolution interpolation from a Cartesian grid to non-Cartesian of

the ith coil k-space data. Let c be an interpolation convolution kernel, k be the non-

Cartesian k-space coordinates, and δ(x) the usual impulse function. One can write

the operation D applied to the ith coil more specifically as,

yi(n) =

∫
r

δ(k(n)− r) {c ∗ xi} (r)dr (5.12)

Ideally, the interpolation kernel, c, should be a sinc function. However, this has

a prohibitively large kernel size. Traditionally, in the gridding algorithm [48], a very

small kernel is used to reduce the computation. The errors associated with a small

kernel are mitigated by oversampling the grid, and the associated image weighting is

mitigated by a deapodization of the resulting image to correct the intensity weighting.

The gridding algorithm in effect trades off complexity with tolerable accuracy errors.

In the proposed reconstruction, the data acquisition consistency in Eq. 5.8 is enforced.

Therefore, the consistent solution when using a non-sinc kernel can not be exactly xi,
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but a function of it, x̃i. It is given by,

x̃i = c̃ ∗ xi, (5.13)

for which c ∗ x̃i = c ∗ c̃ ∗ xi ≈ xi.

In the image domain this function is manifested as a multiplication by a deapodiz-

ing function

m̃i(r) = C̃(r)mi(r) (5.14)

=
1

C(r)
mi(r),

where mi, m̃i, C̃, and C denote the inverse Fourier transform of of xi, x̃i, c̃, and c

respectively. In the proposed reconstruction, after x̃ and m̃ are recovered by solving

the optimization in Eq. 5.10, the image intensity weighting can be corrected by

multiplication with the apodizing function,

m̂i(r) = C(r)m̃i(r) (5.15)

=
C(r)

C(r)
mi(r)

= mi(r).

Choosing an Interpolation Kernel

Some published papers [3,28] provide ways of choosing appropriate interpolation ker-

nels and grid oversampling factors such that the computational complexity is small

and the reconstruction error is minimized. Most of these interpolation kernels (includ-

ing the popular Kaiser-Bessel) produce significant weighting across the image field of

view. This weighting can sometimes be as high as a factor of 10. In an ideal world,

where there is no noise, and the calibration weights are perfect, the image weighting

can be completely corrected with no apparent artifacts [3]. However, in real life,

calibration errors and noise are amplified when the image weighting is compensated.

The error in a reconstructed voxel, m̂i(r), due to calibration errors is a complicated

weighted sum of the rest of the voxels in all coils. The weighted sum depends on the
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specific calibration weight’s errors and on the point spread function (PSF) of the

sampling pattern. Let wi(r) be a set of coefficients representing the error contributed

by voxels, then the error in m̂i(r) can be written as,

m̂i(r)−mi(r) = C(r)

(
mi(r)

C(r)
+
∑
i,ρ

wi(ρ− r)
mi(ρ)

C(ρ)

)
−mi(r) (5.16)

=
∑
i,ρ

C(r)

C(ρ)
wi(ρ− r)mi(ρ).

Of course the error depends on the image, the calibration and the sampling. But, it

is obvious that a large ratio of C(r)/C(ρ) can cause significant error amplification.

In order to mitigate this error amplification, one needs to design an interpolation

kernel which causes an acceptable variation in the image. For example, a windowed-

sinc kernel would introduce much less variation than the Kaiser-Bessel kernel would.

An alternative is to modify the min-max SOCP interpolator by Beatty [3] to include

the image intensity variation constraint. In fact, the interpolation kernel design is

much like a filter design problem. The bandpass ripple of the interpolation filter

corresponds to the intensity variation in the FOV. The stopband ripple corresponds to

the interpolation errors associated with a finite interpolation kernel and the transition-

width corresponds to the required grid oversampling. Figure 5.4 illustrates these

concepts. It shows the requirements for the interpolation kernel design. It also shows

the reconstruction error amplification that is associated with a large image intensity

variation and how it can be corrected.

Revisiting the Calibration

After going through the reconstruction details, I now revisit the details of the calibra-

tion. The grid oversampling in k-space requires that the calibration kernel support be

increased by the same amount. In addition, the grid oversampling corresponds to a

larger FOV support in the reconstructed image. Therefore, the sampling trajectory of

the calibration region must support this larger FOV, or else the fidelity and integrity

of the calibration may be compromised. In addition, the interpolation kernel that
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Figure 5.4: Interpolation kernel in k-space. (a) The specification for the kernel com-
pared to a Kaiser-Bessel kernel. The passband ripple defines the allowed intensity
variation in the image. The stopband ripple is associated with the error that leaks
into the image due to finite kernel size. The transition band defines the required
grid oversampling and image support. The effects of the bandpass ripple are shown
in b-j. The original test signal is shown in (b). (c)-(d) show the reconstruction er-
rors with ideal interpolator and imperfect calibration. (e)-(g) show result of using a
Kaiser-Bessel interpolator. Large image weighting in (e) results in artifact amplifica-
tion by compensation in (f) and g. (h)-(j) show the result of using a “flat” pass-band
interpolator. The post-intensity correction error in (i) and (h) is significantly reduced.
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grids the calibration region should have as little passband ripple as possible, again to

ensure the fidelity of the calibration process.

Reconstruction

The steps for non-Cartesian k-space based reconstruction are as follows:

• Design an appropriate interpolation kernel based on a specific maximum aliasing

amplitude, image weighting, kernel width and grid oversampling

• Perform a calibration that supports the oversampled grid size to obtain the

calibration weights

• Solve Eq. 5.10 using the conjugate gradients algorithm to obtain reconstructed

Cartesian k-space data for all coils

• Reconstruct the images by computing the inverse Fourier transform

• Crop to the desired grid size

• Apodize the images by multiplying with the inverse Fourier transform of the

interpolation kernel.

A diagram for the conjugate gradient algorithm implementation is described in detail

in Fig 5.5. The computation of the operators G and D is also illustrated in that

figure.

The k-space implementation has the advantage of not requiring a Fourier trans-

form during the iterations. However, it has some disadvantages. To comply with the

bandpass ripple requirement the interpolation kernel is inevitably larger than what is

commonly used for gridding (for the same interpolation error and grid oversampling).

In addition, the calibration consistency convolution has to be performed on an over-

sampled grid size, with a larger calibration kernel. These increase the complexity

of the operations in each iteration of the reconstruction. At some point, depending

on the size of the interpolation kernel, calibration kernel, grid size and the specific

machine that is used for reconstruction, the operations in k-space may be more costly
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Figure 5.5: k-Space based reconstruction. (a) Illustration of the conjugate-gradient
algorithm for non-Cartesian consistency constrained reconstruction in k-space. (b)
Illustration of the interpolation operator, D, and its adjoint, D∗ (c) Illustration of
the calibration consistency operator, G and its adjoint, G∗. The notation ĝ∗ji stands
for an inverted conjugated version of the filter gji.
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than performing similar operations in image space. Therefore, I turn to describe the

reconstruction in image space as well.

5.6.3 Image Domain Reconstruction

The reconstruction can be described in the image domain by adjusting the operators

D and G appropriately and solving for the full Cartesian images, m, instead of the

full Cartesian k-space, x. The new optimization is now,

argmin
m

||Dm− y||2 + λ(ε)||(G− I)m||2 | m = IFFTN(x). (5.17)

which is, not surprisingly, similar to Eq. 5.10.

When represented as acting in image space, the operator D becomes non-uniform

Fourier transform (the nuFFT is historically referred to as inverse gridding) opera-

tions. Each nuFFT operates on an individual coil image and computes the k-space

values at given k-space locations. It can be written more formally as,

yi(n) =

∫
δ(k(n)− r)

{
c ∗ FFTαN

(mi

C

)}
(r)dr (5.18)

The advantage here is that the convolution interpolation kernel can be very small,

since it is possible to pre-compensate for the weighting in image space prior to taking

the Fourier transform.

The modification to the G operator involves conversion of the convolution opera-

tions to multiplication with the inverse Fourier transform of the convolution kernels,

mi(r) =
∑
j

Gji(r)mj(r) | Gji = IFFTN(gji). (5.19)

The advantage here is that large calibration kernels do not incur further increase in

computational complexity since the convolution is implemented as a multiplication in

image space. Figure 5.6 illustrates the conjugate gradient reconstruction of Eq. 5.17,

and the implementation of the D and G operators.
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Figure 5.6: Image-space based reconstruction. (a) Illustration of the conjugate gra-
dient algorithm for non-Cartesian consistency constrained reconstruction in image
space. (b) Illustration of the non-uniform Fourier transform operator, D, and its
adjoint, D∗ (c) Illustration of the calibration consistency operator, G and its adjoint,
G∗.
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5.7 Off Resonance Correction

One of the advantages of representing the reconstruction as a solution to linear equa-

tions is that it is possible to incorporate off-resonance variation in the reconstruction.

This is particularly important for non-Cartesian trajectories, where off-resonance fre-

quencies lead to image blurring. The off-resonance correction appears in the data

consistency constraint in Eq. 5.17 by modifying the nuFFT operator D to include

off-resonance information. Denote φn(r) to be a complex vector with unit magnitude

elements. The phase of φn(r) represents the phase of the image, contributed by off-

resonance at the time the sample k(n) is acquired. The part of the operator D that

operates on the ith coil image is,

yi(n) =

∫
δ(k(n)− r)

{
c ∗ FFTαN

(
miφn
C

)}
(r)dr. (5.20)

Efficient ways to implement this operator is to approximate it using a multi-frequency

reconstruction approach as described by [71,102].

5.8 Regularization

Since Eq. 5.21 is described as an optimization, one can include additional terms

in the objective function, as well as constraints that express prior knowledge in the

reconstruction. Consider the optimization problem

argmin
x
||Dx− y||2 + λ1||(G− I)x||2 + λ2R(x) (5.21)

where the function R(x) is a penalty function that incorporates the prior knowl-

edge. This formulation is very flexible because the penalty can be applied on the

image as well as k-space data. Denoting W as a data weighting function, ∇{} as a

finite-difference operator, and Ψ{} as a wavelet operator, here are some examples of
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potential penalties:

R(x) = ||x||2, Tychonov regularization

R(x) = ||Wx||2, Weighted Tychonov regularization

R(x) = ||∇{IFFT (x)}||1, Total Variation (TV)

R(x) = ||Ψ{IFFT (x)}||1, `1 wavelet.

The former two are `1 penalties and are increasingly popular due to the theory of

compressed sensing [68] that was introduced in Chapter 4.

5.9 Results

5.9.1 Noise and Artifacts Measurements

To evaluate the noise and reconstruction properties of SPR-iT in comparison to the

original GRAPPA method, I constructed the following experiment: I scanned a water-

melon 100 times using a balanced-steady-state-free-precessession(b-SSFP) sequence

with scan parameters TE = 2.5 ms, TR = 6.4 ms, flip = 60◦, BW = 62.5 Khz. The

slice thickness was 5 mm, field of view of 16.5×16.5 cm and a matrix size of 256×256

corresponding to 0.65 × 0.65 in-plane resolution. The scan was performed on a GE

Signa-Excite 1.5T scanner using an 8-channel receive coil. The data were undersam-

pled in retrospect by a factor of 3 in the phase-encode direction. Then, each image

was reconstructed with traditional GRAPPA and with SPIR-iT. Both reconstructions

used 30 calibration lines and 9x9 2D calibration kernel. SPIR-iT used an equality

data consistency constraint and was solved iteratively using the conjugate gradient

algorithm with 20 iterations. The resulting reconstructed coil images were combined

with square root of sum-of-squares. Following the reconstructions, the mean differ-

ence error with the fully sampled data set was calculated. In addition the standard

deviation for each pixel was computed and normalized by the standard deviation of

the pixels in the full set to obtain the noise amplification (g factor) estimate.

Figure 5.7 shows the result of the experiment. It shows that SPIR-iT has less errors
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compared to the GRAPPA reconstruction. This is because the data consistency is

enforced. In addition, it exhibits a reduced overall g factor noise amplification because

the equations are coupled and because early termination of the conjugate gradient

algorithm is a form of regularization.

5.9.2 Arbitrary Cartesian Sampling

To demonstrate the generality of SPIR-iT I tested the reconstruction on an irreg-

ularly undersampled data set, by retrospectively undersampling (2-fold) the phase-

encodes of a T1 weighted, Cartesian 3D spoiled gradient echo sequence of a brain

(see Fig. 5.8a). The scan parameters were TE = 8 ms, TR = 17.6 ms, flip = 20◦,

BW = 6.94 Khz. The field of view was 16 × 16 × 22 cm and a matrix size of

192× 160× 220 corresponding to a phase-encode plane resolution of 1× 1 mm. The

scan was performed on a GE Signa-Excite 1.5T scanner using an 8-channel receive

coil. The data were reconstructed using the conjugate gradient algorithm with 22×22

calibration lines and a 7× 7 calibration kernel size. The number of iterations was 10.

Figure 5.8 shows the SPIR-iT reconstruction compared to a zero-filled reconstruction.

The reconstruction is able to remove all the aliasing artifacts.

5.9.3 k-Space Based Non-Cartesian Reconstruction

To demonstrate the k-space based non-Cartesian reconstruction, I scanned a phantom

using a spiral gradient echo sequence. The spiral trajectory was designed with 20

interleaves, 30 cm field of view, and 0.75 mm in-plane resolution. The readout time

was kept short, only 5 ms to avoid off-resonance effects. The scan was performed on

a GE Signa-Excite 1.5T scanner using a 4-channel cardiac coil.

First, an interpolation kernel was designed (Fig. 5.9b) with time-bandwidth prod-

uct of 9, 0.1 passband ripple, maximum aliasing error (stop-band) of 0.005 and a tran-

sition width corresponding to grid oversampling of 1.25. Then, the complete data set

was gridded with density compensation (360× 360 matrix size). A central Cartesian

k-space of 50× 50 pixels was extracted and used for calibrating a 9× 9 kernel. The

calibration was used in SPIR-iT reconstruction from 6 out of the 20 interleaves. The



106 CHAPTER 5. SPIR-IT
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Figure 5.7: Noise measurements statistics of 100 scans. (a) Fully sampled averaged
sum-of-squares image and the individual coil images. (b) sum-of-squares of single 1D
GRAPPA reconstructed image (c) sum-of-squares of single 1D SPIR-iT reconstruc-
tion. (d) the mean 1D GRAPPA reconstruction error showing residual reconstruction
artifacts. (e) the mean 1D SPIR-iT reconstruction error showing reduced reconstruc-
tion artifacts. (f) The measured noise amplification (g factor) for the 1D GRAPPA
reconstruction. (g) SPIR-iT exhibits reduced g factor.
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(a) (b) (c)

Figure 5.8: SPIR-iT from arbitrary Cartesian sampling. (a) the sampling pattern. (b)
sum-of-squares zero-filled reconstruction. (c) consistency constrained reconstruction.

number of iterations was 30.

Figure 5.9 shows the result of the experiment. It shows the SPIR-iT result com-

pared to gridding and the full acquisition. Most of the aliasing artifacts that appear

in the gridding reconstruction are removed in SPIR-iT. However, the reconstruction

is noisier than the fully sampled reconstruction due to the shorter acquisition time

and the g factor.

5.9.4 Image Space Based Non-Cartesian Reconstruction

To demonstrate the image-based non-Cartesian reconstruction I scanned a dynamic

heart using a 3 interleave dual density spiral gradient-echo sequence. The spiral

trajectory was designed to support field of view ranging from 35 cm in the center to

10 cm (3-fold acceleration) in the periphery. The in-plane resolution was 1.5 mm with

readout time of 16 ms, slice thickness was 5 mm. The TR was set to 25 ms achieving

a sliding window temporal resolution of 40 FPS. The trajectory is illustrated in Fig.

5.10e. The scan was performed using the rtHawk real-time MRI system [90] installed

on a GE Signa-Excite 1.5T scanner with a 4-channel cardiac coil. The data for each
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Figure 5.9: k-Space based non-Cartesian SPIR-iT. (a) Reconstruction from fully sam-
pled data. (b) Properties of the k-space interpolator. (c) Gridding reconstruction at
3-fold acceleration. (d) SPIR-iT at 3-fold acceleration.
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sliding window image was reconstructed using the image based SPIR-iT algorithm.

To speed up the reconstruction the previous image was used as an initial image for

the reconstruction of the next image frame. This way, 7 conjugate gradient iterations

were sufficient for good image quality.

Figure 5.10 shows two frames in the cardiac cycle. The gridding reconstruction

images (a) and (b) suffer from coherent (arrows) and incoherent artifacts due to the

undersampling. These artifacts are removed by SPIR-iT.

5.9.5 Off Resonance Correction

To demonstrate the iterative multi-frequency off-resonance correction capabilities of

the reconstruction I applied the same scan parameters as in the previous section

to a short axis dynamic view of the heart. Prior to the acquisition a field map

measurement was taken. As a data consistency operator I used the approach described

by Sutton [102].

Figure 5.11 shows the result of off-resonance corrected SPIR-iT compared to a

gridding reconstruction with no off-resonance correction. SPIR-iT is able to suppress

the coherent and incoherent aliasing, as well as deblurring the image.

5.9.6 Total Variation Regularization

To demonstrate the regularization capabilities of SPIR-iT, I retrospectively under-

sampled the 3D brain data (described previously) by a factor of four. I reconstructed

the data using SPIR-iT with and without total variation regularization.

Figure 5.12 illustrates the result of the reconstructions. It shows that the non-

regularized SPIR-iT exhibits increased noise, especially in the center of the image,

due to the g factor. The noise is suppressed by the total variation regularization,

while the edges and features in the image are preserved.
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(a)

(b)

(c)

(d)

(e)

Figure 5.10: Dynamic cardiac imaging with dual density spirals. Two phases of a
four chamber view of the heart. (a)-(b) Sum-of-squares of gridding reconstruction
exhibits coherent (arrows) and incoherent (noise-like) aliasing artifacts. (c)-(d) Both
the coherent and incoherent artifacts are removed by SPIR-iT. (e) One out of the
three spiral interleaves.
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Figure 5.11: Dynamic cardiac imaging with dual density spirals and off-resonance
correction. Two phases of a short axis view of the heart. (a)-(b) sum-of-squares
of gridding reconstruction exhibits coherent (arrows), incoherent (noise-like) aliasing
artifacts and blurring due to off-resonance. (c)-(d) SPIR-iT reduces both the coherent
and incoherent artifacts as well as deblurring the image (arrows).



112 CHAPTER 5. SPIR-IT

Figure 5.12: Total Variation regularization (TV): (a) the non-Regularized SPIR-
iT exhibits noise amplification due to the g factor. (b) the noise amplification is
suppressed by the TV reconstruction, while the edges and features in the image are
preserved.
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5.10 Conclusions

In conclusion, I have presented SPIR-iT, a self consistency formulation for coil-by-coil

parallel imaging reconstruction. The reconstruction can be solved efficiently using it-

erative methods for data acquired on arbitrary k-space trajectories. I presented two

variants of the reconstruction; image-space based, and k-space based. In the k-space

based reconstruction I introduced new requirements for k-space interpolation. In ad-

dition, I demonstrated that the formulation is easily extendible to include other tech-

niques such as regularization and off-resonance correction. I showed that enforcing

consistency constraints results in better conditioning, more accurate reconstruction,

and better noise behavior than the traditional GRAPPA approach.
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Chapter 6

Summary and Recommendation

The title “Sparse MRI” summarized well the theme of this thesis. On the one hand,

sparse sampling of k-space is used to accelerate the acquisitions and reduce the overall

scan time. On the other hand, sparsity of representation allows the sparsely sampled

data to be reconstructed into accurate full resolution, full field of view images. Con-

tinuing with the theme, I present a somewhat sparse summary. The key contributions

of the thesis are:

• A new method to design time-optimal gradient waveforms. It provides a general,

computationally efficient solution for arbitrary k-space trajectories.

• The application of the compressed sensing theory to rapid MRI.

• A new iTerative Self-consistent Parallel Imaging Reconstruction (SPIR-iT) method.

It is a general, optimal solution for auto-calibrating parallel imaging from arbi-

trary k-space trajectories. It is also a general framework for easily incorporating

additional image priors, and in particular sparsity/compressibility constraints.

There are several directions for future work that I find interesting:

• Extension of the time-optimal gradient waveform design to non-rotationally

invariant hardware constraints.

• Extension of the time-optimal gradient waveform design to include the L-C

model for gradient hardware constraints.
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• Finding the optimal sampling density for compressed sensing.

• Improving the reconstruction time for compressed sensing.

• Extending compressed sensing to non-periodic dynamic imaging.

• Exploring the combination of compressed sensing, parallel imaging and non-

Cartesian trajectories.

• Training sparsifying transformations tailored for specific applications. Instead

of wavelets use brainlets, angiolets, cardiaclets, diffusionlets, etc.



Appendix A

Derivations for the Time-Optimal

Gradient Waveform Design

A.1 Arc Length Expression of the Gradient Con-

straints

I start by observing that

|ġ(t)|2 =
∣∣γ−1

(
C ′′(s(t))ṡ(t)2 + C ′(s(t))s̈(t)

)∣∣2
= γ−2

(
|C ′′(s(t))|2ṡ(t)4 + |C ′(s(t))|2s̈(t)2

+C ′′(s(t))TC ′(s(t))ṡ(t)2s̈(t)
)
.

The tangent and the normal vectors are always orthogonal, that is, C ′′(s(t))TC ′(s(t)) =

0. Also, recall that |C ′(s(t))| = 1 and that |C ′′(s(t))| = κ(s(t)). The slew-rate con-

straint can therefore be expressed as

γ−2
(
k(s(t))2ṡ(t)4 + s̈(t)2

)
≤ S2

max,

which in turn implies that

s̈(t)2 ≤
[
γ2S2

max − κ(s(t))2ṡ(t)4
]
.
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The right-hand side is non-negative when

ṡ(t) ≤

√
γSmax

κ(s(t))
.

Finally, the gradient magnitude is limited |g(t)| ≤ Gmax resulting in the desired second

constraint,

ṡ(t) ≤ min

{
γGmax,

√
γSmax

κ(s(t))

}
.

A.2 Optimality of the Gradient Waveform Design

Let v denote any velocity profile along the trajectory that satisfies the constraints

of (3.18). Recall that the traversal time Tv of v is given by

Tv =

∫ L

0

ds

v(s)
.

It follows from Lemma 3 in [53] that

v(s) ≤ v?(s) = min{v+(s), v−(s)}, ∀ s ∈ [0, L].

Therefore, Tv ≥ Tv? . It can be shown through some arguments similar to those used

to prove Theorem 3 in [53] that v? satisfies the constraints of (3.18). Therefore, v? is

optimal for (3.18).
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